Centos7安装ElasticSearch 6.4.1入门教程详解

1.下载ElasticSearch 6.4.1安装包 下载地址:

https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.1.tar.gz

2.解压压缩包

[root@localhost ElasticSearch]# tar -zxvf elasticsearch-6.4.1.tar.gz

3.启动ElasticSearch

[root@localhost bin]# ./elasticsearch

以后台方式启动

[root@localhost bin]# ./elasticsearch -d

TIPS:

[root@localhost bin]# ./elasticsearch

[2018-09-19T19:46:09,817][WARN ][o.e.b.ElasticsearchUncaughtExceptionHandler] [] uncaught exception in thread [main]

org.elasticsearch.bootstrap.StartupException: java.lang.RuntimeException: can not run elasticsearch as root

at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:140) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:127) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124) ~[elasticsearch-cli-6.4.1.jar:6.4.1]

at org.elasticsearch.cli.Command.main(Command.java:90) ~[elasticsearch-cli-6.4.1.jar:6.4.1]

at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:93) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]

Caused by: java.lang.RuntimeException: can not run elasticsearch as root

at org.elasticsearch.bootstrap.Bootstrap.initializeNatives(Bootstrap.java:104) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.bootstrap.Bootstrap.setup(Bootstrap.java:171) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:326) ~[elasticsearch-6.4.1.jar:6.4.1]

at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:136) ~[elasticsearch-6.4.1.jar:6.4.1]

ElasticSearch 不能以root用户角色启动,因此需要将安装目录授权给其他用户,用其他用户来启动

启动成功后,验证,打开新的终端,执行如下命令:

[root@localhost ~]# curl 'http://localhost:9200/?pretty'

{

"name" : "O5BAVYE",

"cluster_name" : "elasticsearch",

"cluster_uuid" : "rw1yjlzkSgODXkUVgIxmxg",

"version" : {

"number" : "6.4.1",

"build_flavor" : "default",

"build_type" : "tar",

"build_hash" : "e36acdb",

"build_date" : "2018-09-13T22:18:07.696808Z",

"build_snapshot" : false,

"lucene_version" : "7.4.0",

"minimum_wire_compatibility_version" : "5.6.0",

"minimum_index_compatibility_version" : "5.0.0"

},

"tagline" : "You Know, for Search"

}

[root@localhost ~]#

返回信息则表示安装成功!

4.安装Kibana

Sense 是一个 Kibana 应用 它提供交互式的控制台,通过你的浏览器直接向 Elasticsearch 提交请求。 这本书的在线版本包含有一个 View in Sense 的链接,里面有许多代码示例。当点击的时候,它会打开一个代码示例的Sense控制台。 你不必安装 Sense,但是它允许你在本地的 Elasticsearch 集群上测试示例代码,从而使本书更具有交互性。

下载kibana

Kibana是一个为 ElasticSearch 提供的数据分析的 Web 接口。可使用它对日志进行高效的搜索、可视化、分析等各种操作

https://artifacts.elastic.co/downloads/kibana/kibana-6.4.1-linux-x86_64.tar.gz

下载完成解压Kibana

[root@localhost ElasticSearch]# tar -zxvf kibana-6.4.1-linux-x86_64.tar.gz

修改  配置config目录下的kibana.yml 文件,配置elasticsearch地址和kibana地址信息

server.host: "192.168.92.50" # kibana 服务器地址

elasticsearch.url: "http://192.168.92.50:9200" # ES 地址

启动 Kibana

[root@localhost bin]# ./kibana

安装Kibana本机访问:http://localhost:5601/

选择Dev Tools菜单,即可实现可视化请求

5.安装LogStash

下载logStash

https://artifacts.elastic.co/downloads/logstash/logstash-7.0.1.tar.gz

下载完成解压后,config目录下配置日志收集日志配置文件 logstash.conf

# Sample Logstash configuration for creating a simple

# Beats -> Logstash -> Elasticsearch pipeline.

input {

tcp {

mode => "server"

host => "192.168.92.50"

port => 4560

codec => json_lines

}

}

output {

elasticsearch {

hosts => "192.168.92.50:9200"

index => "springboot-logstash-%{+YYYY.MM.dd}"

}

}

配置成功后启动logstatsh

[root@localhost bin]# ./logstash -f ../config/logstash.conf

ES  一些基础知识:

索引(名词):

如前所述,一个 索引 类似于传统关系数据库中的一个 数据库 ,是一个存储关系型文档的地方。 索引 (index) 的复数词为 indices 或 indexes 。

索引(动词):

索引一个文档 就是存储一个文档到一个 索引 (名词)中以便它可以被检索和查询到。这非常类似于 SQL 语句中的 INSERT 关键词,除了文档已存在时新文档会替换旧文档情况之外。

倒排索引:

关系型数据库通过增加一个 索引 比如一个 B树(B-tree)索引 到指定的列上,以便提升数据检索速度。Elasticsearch 和 Lucene 使用了一个叫做 倒排索引 的结构来达到相同的目的。

PUT /megacorp/employee/1

{

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests": [ "sports", "music" ]

}

返回结果:

#! Deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_version": 1,

"result": "created",

"_shards": {

"total": 2,

"successful": 1,

"failed": 0

},

"_seq_no": 0,

"_primary_term": 1

}

路径 /megacorp/employee/1 包含了三部分的信息:

megacorp 索引名称

employee  类型名称

1        特定雇员的ID

放置第二个雇员信息:

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_version": 1,

"result": "created",

"_shards": {

"total": 2,

"successful": 1,

"failed": 0

},

"_seq_no": 0,

"_primary_term": 1

}

返回结果:

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_version": 1,

"result": "created",

"_shards": {

"total": 2,

"successful": 1,

"failed": 0

},

"_seq_no": 0,

"_primary_term": 1

}

放置第三个雇员信息

{

"_index": "megacorp",

"_type": "employee",

"_id": "3",

"_version": 1,

"result": "created",

"_shards": {

"total": 2,

"successful": 1,

"failed": 0

},

"_seq_no": 0,

"_primary_term": 1

}

5.检索文档

检索到单个雇员的数据

GET /megacorp/employee/1

返回结果:

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_version": 1,

"found": true,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

}

}

6.轻量搜索

一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!

第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:

GET /megacorp/employee/_search

返回结果:

{

"took": 31,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 3,

"max_score": 1,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_score": 1,

"_source": {

"first_name": "Jane",

"last_name": "Smith",

"age": 32,

"about": "I like to collect rock albums",

"interests": [

"music"

]

}

},

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_score": 1,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

}

},

{

"_index": "megacorp",

"_type": "employee",

"_id": "3",

"_score": 1,

"_source": {

"first_name": "Douglas",

"last_name": "Fir",

"age": 35,

"about": "I like to build cabinets",

"interests": [

"forestry"

]

}

}

]

}

}

通过姓名模糊匹配来获得结果

GET /megacorp/employee/_search?q=last_name:Smith

返回结果:

{

"took": 414,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 2,

"max_score": 0.2876821,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_score": 0.2876821,

"_source": {

"first_name": "Jane",

"last_name": "Smith",

"age": 32,

"about": "I like to collect rock albums",

"interests": [

"music"

]

}

},

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_score": 0.2876821,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

}

}

]

}

}

7.使用查询表达式搜索

领域特定语言 (DSL), 指定了使用一个 JSON 请求

GET /megacorp/employee/_search

{

"query" : {

"match" : {

"last_name" : "Smith"

}

}

}

返回结果:

{

"took": 7,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 2,

"max_score": 0.2876821,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_score": 0.2876821,

"_source": {

"first_name": "Jane",

"last_name": "Smith",

"age": 32,

"about": "I like to collect rock albums",

"interests": [

"music"

]

}

},

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_score": 0.2876821,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

}

}

]

}

}

8.更复杂的搜索

搜索姓氏为 Smith 的雇员,但这次我们只需要年龄大于 30 的,使用过滤器 filter ,它支持高效地执行一个结构化查询

GET /megacorp/employee/_search

{

"query" : {

"bool": {

"must": {

"match" : {

"last_name" : "smith"

}

},

"filter": {

"range" : {

"age" : { "gt" : 30 }

}

}

}

}

}

其中:range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于(_great than)

返回结果:

{

"took": 44,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 1,

"max_score": 0.2876821,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_score": 0.2876821,

"_source": {

"first_name": "Jane",

"last_name": "Smith",

"age": 32,

"about": "I like to collect rock albums",

"interests": [

"music"

]

}

}

]

}

}

9.全文搜索

搜索下所有喜欢攀岩(rock climbing)的雇员

GET /megacorp/employee/_search

{

"query" : {

"match" : {

"about" : "rock climbing"

}

}

}

返回结果:

{

"took": 17,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 2,

"max_score": 0.5753642,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_score": 0.5753642,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

}

},

{

"_index": "megacorp",

"_type": "employee",

"_id": "2",

"_score": 0.2876821,

"_source": {

"first_name": "Jane",

"last_name": "Smith",

"age": 32,

"about": "I like to collect rock albums",

"interests": [

"music"

]

}

}

]

}

}

10.全文搜索

找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者短语 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。

GET /megacorp/employee/_search

{

"query" : {

"match_phrase" : {

"about" : "rock climbing"

}

}

}

返回结果:

{

"took": 142,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 1,

"max_score": 0.5753642,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_score": 0.5753642,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

}

}

]

}

}

11.高亮搜索

许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。

增加参数: highlight

GET /megacorp/employee/_search

{

"query" : {

"match_phrase" : {

"about" : "rock climbing"

}

},

"highlight": {

"fields" : {

"about" : {}

}

}

}

返回结果:

{

"took": 250,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 1,

"max_score": 0.5753642,

"hits": [

{

"_index": "megacorp",

"_type": "employee",

"_id": "1",

"_score": 0.5753642,

"_source": {

"first_name": "John",

"last_name": "Smith",

"age": 25,

"about": "I love to go rock climbing",

"interests": [

"sports",

"music"

]

},

"highlight": {

"about": [

"I love to go <em>rock</em> <em>climbing</em>"

]

}

}

]

}

}

其中高亮模块为highlight属性

12.分析

Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。

举个例子,挖掘出雇员中最受欢迎的兴趣爱好:

GET /megacorp/employee/_search

{

"aggs": {

"all_interests": {

"terms": { "field": "interests" }

}

}

}

返回结果:

{

...

"hits": { ... },

"aggregations": {

"all_interests": {

"buckets": [

{

"key": "music",

"doc_count": 2

},

{

"key": "forestry",

"doc_count": 1

},

{

"key": "sports",

"doc_count": 1

}

]

}

}

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

以上是 Centos7安装ElasticSearch 6.4.1入门教程详解 的全部内容, 来源链接: utcz.com/p/226005.html

回到顶部