Java NIO原理图文分析及代码实现

前言:

最近在分析hadoop的RPC(Remote Procedure Call Protocol ,远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。可以参考:http://baike.baidu.com/view/32726.htm )机制时,发现hadoop的RPC机制的实现主要用到了两个技术:动态代理(动态代理可以参考博客:http://weixiaolu.iteye.com/blog/1477774 )和java NIO。为了能够正确地分析hadoop的RPC源码,我觉得很有必要先研究一下java NIO的原理和具体实现。

这篇博客我主要从两个方向来分析java NIO

目录:

一.java NIO 和阻塞I/O的区别

     1. 阻塞I/O通信模型

     2. java NIO原理及通信模型

二.java NIO服务端和客户端代码实现

具体分析:

一.java NIO 和阻塞I/O的区别

1. 阻塞I/O通信模型

假如现在你对阻塞I/O已有了一定了解,我们知道阻塞I/O在调用InputStream.read()方法时是阻塞的,它会一直等到数据到来时(或超时)才会返回;同样,在调用ServerSocket.accept()方法时,也会一直阻塞到有客户端连接才会返回,每个客户端连接过来后,服务端都会启动一个线程去处理该客户端的请求。阻塞I/O的通信模型示意图如下:

 

 如果你细细分析,一定会发现阻塞I/O存在一些缺点。根据阻塞I/O通信模型,我总结了它的两点缺点:

1. 当客户端多时,会创建大量的处理线程。且每个线程都要占用栈空间和一些CPU时间

2. 阻塞可能带来频繁的上下文切换,且大部分上下文切换可能是无意义的。

在这种情况下非阻塞式I/O就有了它的应用前景。

2. java NIO原理及通信模型

Java NIO是在jdk1.4开始使用的,它既可以说成“新I/O”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:

1. 由一个专门的线程来处理所有的 IO 事件,并负责分发。

2. 事件驱动机制:事件到的时候触发,而不是同步的去监视事件。

3. 线程通讯:线程之间通过 wait,notify 等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。

阅读过一些资料之后,下面贴出我理解的java NIO的工作原理图:

 

(注:每个线程的处理流程大概都是读取数据、解码、计算处理、编码、发送响应。)

Java NIO的服务端只需启动一个专门的线程来处理所有的 IO 事件,这种通信模型是怎么实现的呢?呵呵,我们一起来探究它的奥秘吧。java NIO采用了双向通道(channel)进行数据传输,而不是单向的流(stream),在通道上可以注册我们感兴趣的事件。一共有以下四种事件:

事件名对应值
服务端接收客户端连接事件SelectionKey.OP_ACCEPT(16)
客户端连接服务端事件SelectionKey.OP_CONNECT(8)
读事件SelectionKey.OP_READ(1)
写事件SelectionKey.OP_WRITE(4)

        

  服务端和客户端各自维护一个管理通道的对象,我们称之为selector,该对象能检测一个或多个通道 (channel) 上的事件。我们以服务端为例,如果服务端的selector上注册了读事件,某时刻客户端给服务端发送了一些数据,阻塞I/O这时会调用read()方法阻塞地读取数据,而NIO的服务端会在selector中添加一个读事件。服务端的处理线程会轮询地访问selector,如果访问selector时发现有感兴趣的事件到达,则处理这些事件,如果没有感兴趣的事件到达,则处理线程会一直阻塞直到感兴趣的事件到达为止。下面是我理解的java NIO的通信模型示意图:

 

 二.java NIO服务端和客户端代码实现

为了更好地理解java NIO,下面贴出服务端和客户端的简单代码实现。

服务端:

package cn.nio;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.SelectionKey;

import java.nio.channels.Selector;

import java.nio.channels.ServerSocketChannel;

import java.nio.channels.SocketChannel;

import java.util.Iterator;

/**

* NIO服务端

* @author 小路

*/

public class NIOServer {

//通道管理器

private Selector selector;

/**

* 获得一个ServerSocket通道,并对该通道做一些初始化的工作

* @param port 绑定的端口号

* @throws IOException

*/

public void initServer(int port) throws IOException {

// 获得一个ServerSocket通道

ServerSocketChannel serverChannel = ServerSocketChannel.open();

// 设置通道为非阻塞

serverChannel.configureBlocking(false);

// 将该通道对应的ServerSocket绑定到port端口

serverChannel.socket().bind(new InetSocketAddress(port));

// 获得一个通道管理器

this.selector = Selector.open();

//将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_ACCEPT事件,注册该事件后,

//当该事件到达时,selector.select()会返回,如果该事件没到达selector.select()会一直阻塞。

serverChannel.register(selector, SelectionKey.OP_ACCEPT);

}

/**

* 采用轮询的方式监听selector上是否有需要处理的事件,如果有,则进行处理

* @throws IOException

*/

@SuppressWarnings("unchecked")

public void listen() throws IOException {

System.out.println("服务端启动成功!");

// 轮询访问selector

while (true) {

//当注册的事件到达时,方法返回;否则,该方法会一直阻塞

selector.select();

// 获得selector中选中的项的迭代器,选中的项为注册的事件

Iterator ite = this.selector.selectedKeys().iterator();

while (ite.hasNext()) {

SelectionKey key = (SelectionKey) ite.next();

// 删除已选的key,以防重复处理

ite.remove();

// 客户端请求连接事件

if (key.isAcceptable()) {

ServerSocketChannel server = (ServerSocketChannel) key

.channel();

// 获得和客户端连接的通道

SocketChannel channel = server.accept();

// 设置成非阻塞

channel.configureBlocking(false);

//在这里可以给客户端发送信息哦

channel.write(ByteBuffer.wrap(new String("向客户端发送了一条信息").getBytes()));

//在和客户端连接成功之后,为了可以接收到客户端的信息,需要给通道设置读的权限。

channel.register(this.selector, SelectionKey.OP_READ);

// 获得了可读的事件

} else if (key.isReadable()) {

read(key);

}

}

}

}

/**

* 处理读取客户端发来的信息 的事件

* @param key

* @throws IOException

*/

public void read(SelectionKey key) throws IOException{

// 服务器可读取消息:得到事件发生的Socket通道

SocketChannel channel = (SocketChannel) key.channel();

// 创建读取的缓冲区

ByteBuffer buffer = ByteBuffer.allocate(10);

channel.read(buffer);

byte[] data = buffer.array();

String msg = new String(data).trim();

System.out.println("服务端收到信息:"+msg);

ByteBuffer outBuffer = ByteBuffer.wrap(msg.getBytes());

channel.write(outBuffer);// 将消息回送给客户端

}

/**

* 启动服务端测试

* @throws IOException

*/

public static void main(String[] args) throws IOException {

NIOServer server = new NIOServer();

server.initServer(8000);

server.listen();

}

}

 

客户端:

package cn.nio;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.SelectionKey;

import java.nio.channels.Selector;

import java.nio.channels.SocketChannel;

import java.util.Iterator;

/**

* NIO客户端

* @author 小路

*/

public class NIOClient {

//通道管理器

private Selector selector;

/**

* 获得一个Socket通道,并对该通道做一些初始化的工作

* @param ip 连接的服务器的ip

* @param port 连接的服务器的端口号

* @throws IOException

*/

public void initClient(String ip,int port) throws IOException {

// 获得一个Socket通道

SocketChannel channel = SocketChannel.open();

// 设置通道为非阻塞

channel.configureBlocking(false);

// 获得一个通道管理器

this.selector = Selector.open();

// 客户端连接服务器,其实方法执行并没有实现连接,需要在listen()方法中调

//用channel.finishConnect();才能完成连接

channel.connect(new InetSocketAddress(ip,port));

//将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_CONNECT事件。

channel.register(selector, SelectionKey.OP_CONNECT);

}

/**

* 采用轮询的方式监听selector上是否有需要处理的事件,如果有,则进行处理

* @throws IOException

*/

@SuppressWarnings("unchecked")

public void listen() throws IOException {

// 轮询访问selector

while (true) {

selector.select();

// 获得selector中选中的项的迭代器

Iterator ite = this.selector.selectedKeys().iterator();

while (ite.hasNext()) {

SelectionKey key = (SelectionKey) ite.next();

// 删除已选的key,以防重复处理

ite.remove();

// 连接事件发生

if (key.isConnectable()) {

SocketChannel channel = (SocketChannel) key

.channel();

// 如果正在连接,则完成连接

if(channel.isConnectionPending()){

channel.finishConnect();

}

// 设置成非阻塞

channel.configureBlocking(false);

//在这里可以给服务端发送信息哦

channel.write(ByteBuffer.wrap(new String("向服务端发送了一条信息").getBytes()));

//在和服务端连接成功之后,为了可以接收到服务端的信息,需要给通道设置读的权限。

channel.register(this.selector, SelectionKey.OP_READ);

// 获得了可读的事件

} else if (key.isReadable()) {

read(key);

}

}

}

}

/**

* 处理读取服务端发来的信息 的事件

* @param key

* @throws IOException

*/

public void read(SelectionKey key) throws IOException{

//和服务端的read方法一样

}

/**

* 启动客户端测试

* @throws IOException

*/

public static void main(String[] args) throws IOException {

NIOClient client = new NIOClient();

client.initClient("localhost",8000);

client.listen();

}

}

小结:

终于把动态代理和java NIO分析完了,呵呵,下面就要分析hadoop的RPC机制源码了,博客地址:http://weixiaolu.iteye.com/blog/1504898 。不过如果对java NIO的理解存在异议的,欢迎一起讨论。

如需转载,请注明出处:http://weixiaolu.iteye.com/blog/1479656

以上是 Java NIO原理图文分析及代码实现 的全部内容, 来源链接: utcz.com/p/210171.html

回到顶部