MySQL-Canal-Kafka数据复制详解Linux下搭建Kafka集群Linux下搭建ZooKeeper集群

摘要

MySQL被广泛用于海量业务的存储数据库,在大数据时代,我们亟需对其中的海量数据进行分析,但在MySQL之上进行大数据分析显然是不现实的,这会影响业务系统的运行稳定。如果我们要实时地分析这些数据,则需要实时地将其复制到适合OLAP的数据系统上。本文介绍一种CDC工具——Canal,由阿里巴巴开源,且广泛用于阿里的生产系统,它模拟MySQL Slave结点,实时获取变化的binlog,我们将把canal获取到的binlog投递到kafka上以供后续系统消费。

本文基于Ubuntu 16.04 LTS

环境说明

  • Java 8+
  • 搭建好ZooKeeper集群
  • 搭建好Kafka集群

若未搭建ZooKeeper集群、Kafka集群,可参考:

Linux下搭建ZooKeeper集群

Linux下搭建kafka集群

一、源MySQL配置

1、开启 Binlog 写入功能

对于自建 MySQL , 需要先开启 Binlog 写入功能,配置 binlog-format 为 ROW 模式,my.cnf 中配置如下

$ vim /etc/my.cnf

[mysqld]

log-bin=mysql-bin # 开启 binlog

binlog-format=ROW # 选择 ROW 模式

server_id=1 # 配置 MySQL replaction 需要定义,不能和 canal 的 slaveId 重复

#重启MySQL数据库

$ service mysql restart

2、创建并授权canal用户

授权 canal 链接 MySQL 账号具有作为 MySQL slave 的权限, 如果已有账户可直接 grant

> CREATE USER canal IDENTIFIED BY 'canal';

> GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';

--> GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;

> FLUSH PRIVILEGES;

二、安装ZooKeeper

详细请参考:Linux下搭建ZooKeeper集群

1、在所有节点上启动zkServer

$ zkServer.sh start&

2、查看节点状态

$ zkServer.sh status

三、安装KafKa

详细请参考:Linux下搭建kafka集群

1、在所有节点上启动kafka

#从后台启动Kafka集群(3台都需要启动)

$ cd /usr/local/kafka_2.13-2.7.0/bin #进入到kafka的bin目录

$ ./kafka-server-start.sh -daemon ../config/server.properties

#查看kafka是否启动

$ jps

2、创建与查看Topic

$ cd /usr/local/kafka_2.13-2.7.0/bin #进入到kafka的bin目录

#创建Topic

$ ./kafka-topics.sh --create --zookeeper 192.168.1.113:2181,192.168.1.114:2181,192.168.1.115:2181 --replication-factor 2 --partitions 1 --topic hello_canal

#解释

# --create 表示创建

# --zookeeper 192.168.1.113:2181 后面的参数是zk的集群节点

# --replication-factor 2 表示复本数

# --partitions 1 表示分区数

# --topic hello_canal 表示主题名称为hello_canal

#查看topic 列表:

$ ./kafka-topics.sh --list --zookeeper 192.168.1.113:2181,192.168.1.114:2181,192.168.1.115:2181

#查看指定topic:

$ ./kafka-topics.sh --describe --zookeeper 192.168.1.113:2181,192.168.1.114:2181,192.168.1.115:2181 --topic hello_canal

Topic: hello_canal PartitionCount: 1 ReplicationFactor: 2 Configs:

Topic: hello_canal Partition: 0 Leader: 0 Replicas: 0,2 Isr: 0,2

3、验证Kafka集群是否启动成功

# 随便在一个zk节点上启动zkCli(zookeeper客户端)

$ sh $ZOOKEEPER_HOME/bin/zkCli.sh

$ [zk: localhost:2181(CONNECTED) 0] ls /brokers/ids

[0, 1, 2]

# 如果能看到三台kafka节点的broker.id,则说明三台kafka节点正常启动

四、安装Canal.server

(一)下载并解压

1、下载

到Canal官网,下载最新压缩包:canal.deployer-latest.tar.gz

$ cd /data

$ wget https://github.com/alibaba/canal/releases/download/canal-1.1.5-alpha-2/canal.deployer-1.1.5-SNAPSHOT.tar.gz

2、解压

$ mkdir /usr/local/canal

$ tar -zxvf canal.deployer-1.1.5-SNAPSHOT.tar.gz -C /usr/local/canal

(二)修改配置文件

1、修改instance配置文件

$ vim /usr/local/canal/conf/hello_canal/instance.properties

## mysql serverId

canal.instance.mysql.slaveId = 1234

#position info,需要改成自己的数据库信息

canal.instance.master.address = 127.0.0.1:3306

canal.instance.master.journal.name =

canal.instance.master.position =

canal.instance.master.timestamp =

#canal.instance.standby.address =

#canal.instance.standby.journal.name =

#canal.instance.standby.position =

#canal.instance.standby.timestamp =

#username/password,需要改成自己的数据库信息

canal.instance.dbUsername = canal

canal.instance.dbPassword = canal

canal.instance.defaultDatabaseName =

canal.instance.connectionCharset = UTF-8

#table regex

canal.instance.filter.regex = .\*\\\\..\*

# mq config

canal.mq.topic=hello_canal

# dynamic topic route by schema or table regex

#canal.mq.dynamicTopic=mytest1.user,mytest2\\..*,.*\\..*

canal.mq.partition=0

canal.instance.connectionCharset代表数据库的编码方式对应到 java 中的编码类型,比如 UTF-8,GBK,ISO-8859-1

如果系统是1个 cpu,需要将canal.instance.parser.parallel设置为false

2、修改canal配置文件

$ vim /usr/local/canal/conf/canal.properties

# ...

# 可选项: tcp(默认), kafka, RocketMQ

canal.serverMode = kafka

# ...

# kafka/rocketmq 集群配置,如果你的mq已经做了集群配置,则需要把所有节点的ip:port都写全在下方

canal.mq.servers = 192.168.1.113:9092,192.168.1.114:9092,192.168.1.115:9092

canal.mq.retries = 0

# flagMessage模式下可以调大该值, 但不要超过MQ消息体大小上限

canal.mq.batchSize = 16384

canal.mq.maxRequestSize = 1048576

# flatMessage模式下请将该值改大, 建议50-200

canal.mq.lingerMs = 1

canal.mq.bufferMemory = 33554432

# Canal的batch size, 默认50K, 由于kafka最大消息体限制请勿超过1M(900K以下)

canal.mq.canalBatchSize = 50

# Canal get数据的超时时间, 单位: 毫秒, 空为不限超时

canal.mq.canalGetTimeout = 100

# 是否为flat json格式对象

canal.mq.flatMessage = false

canal.mq.compressionType = none

canal.mq.acks = all

# kafka消息投递是否使用事务

canal.mq.transaction = false

(三)启动canal

1、启动

$ cd /usr/local/canal/

$ sh bin/startup.sh

2、查看server日志

$ vim /usr/local/canal/logs/canal/canal.log

2021-02-22 15:45:24.422 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## set default uncaught exception handler

2021-02-22 15:45:24.559 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## load canal configurations

2021-02-22 15:45:24.624 [main] INFO com.alibaba.otter.canal.deployer.CanalStarter - ## start the canal server.

2021-02-22 15:45:24.834 [main] INFO com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[172.17.0.1(172.17.0.1):11111]

2021-02-22 15:45:30.351 [main] INFO com.alibaba.otter.canal.deployer.CanalStarter - ## the canal server is running now ......

3、查看instance的日志

$ vim /usr/local/canal/logs/hello_canal/hello_canal.log

2021-02-22 16:54:24.284 [main] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]

2021-02-22 16:54:24.308 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [hello_canal/instance.properties]

2021-02-22 16:54:25.143 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]

2021-02-22 16:54:25.144 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [hello_canal/instance.properties]

2021-02-22 16:54:26.586 [main] INFO c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-hello_canal

2021-02-22 16:54:26.642 [main] WARN c.a.o.canal.parse.inbound.mysql.dbsync.LogEventConvert - --> init table filter : ^.*\..*$

2021-02-22 16:54:26.642 [main] WARN c.a.o.canal.parse.inbound.mysql.dbsync.LogEventConvert - --> init table black filter : ^mysql\.slave_.*$

2021-02-22 16:54:27.057 [destination = hello_canal , address = ubuntu-master.com/192.168.1.113:3306 , EventParser] WARN c.a.o.c.p.inbound.mysql.rds.RdsBinlogEventParserProxy - ---> begin to find start position, it will be long time for reset or first position

2021-02-22 16:54:27.176 [destination = hello_canal , address = ubuntu-master.com/192.168.1.113:3306 , EventParser] WARN c.a.o.c.p.inbound.mysql.rds.RdsBinlogEventParserProxy - prepare to find start position just show master status

2021-02-22 16:54:27.179 [main] INFO c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....

4、关闭

$ cd /usr/local/canal/

$ sh bin/stop.sh

五、查看Canal数据同步情况

(一)通过Kafka消费者查看

1、启动Kafka消费者

在另一台服务器上创建一个消费者:

$ cd /usr/local/kafka_2.13-2.7.0/bin

$ ./kafka-console-consumer.sh --bootstrap-server 192.168.1.113:9092,192.168.1.114:9092,192.168.1.115:9092 --topic hello_canal --from-beginning

注:Kafka 从 2.2 版本开始将kafka-topic.sh脚本中的 −−zookeeper参数标注为 “过时”,推荐使用 −−bootstrap-server参数。

端口也由之前的zookeeper通信端口2181,改为了kafka通信端口9092

2、在源mysql数据库上修改数据

mysql> use test;

mysql> insert into fk values(13,'hello_canal',19);

3、消费者窗口输出内容

{"data":[{"id":"13","name":"hello_canal","age":"19"}],"database":"test","es":1614252283000,"id":2,"isDdl":false,"mysqlType":{"id":"int(10) unsigned","name":"varchar(100)","age":"int(11)"},"old":null,"pkNames":["id"],"sql":"","sqlType":{"id":4,"name":12,"age":4},"table":"fk","ts":1614252283248,"type":"INSERT"}

说明canal已经成功捕获到源MySQL的变化数据binlog并投递到kafka集群的hello_canal主题中。

六、遇到的问题

(一)canal同步mysql binlog到kafka,启动后instance日志报TimeoutException: Failed to update metadata after 60000 ms.

1、详细报错信息:

Caused by: java.util.concurrent.ExecutionException: org.apache.kafka.common.errors.TimeoutException: Failed to update metadata after 60000 ms.

2、报错可能原因及方案:

报错原因1:kafka的配置文件config/server.propertieslisteners=PLAINTEXT://your.host.name:9092以及advertise.listeners=PLAINTEXT://your.host.name:9092没有配置,导致canal无法与kafka进行socket通信。

解决方案:补充上述两项配置,重启kafka即可。

报错原因2:canal的配置文件conf/canal.propertieskafka.bootstrap.servers = x.x.x.x:9092没有把所有的kafka节点配上。报错是因为只配了一台kafka节点,而我是以集群模式启动了三个kafka节点。

解决方案:修改conf/canal.properties中为kafka.bootstrap.servers = x.x.x.1:9092,x.x.x.2:9092,x.x.x.3:9092,重启canal即可。

(二)canal无法stop

1、详细报错信息:

bin/stop.sh: 52: kill: No such process

bin/stop.sh: 58: [: unexpected operator

bin/stop.sh: 63: bin/stop.sh let: not found

2、报错原因及方案:

报错:let: not found

因为在ubuntu默认是指向bin/dash解释器的,dash是阉割版的bash,其功能远没有bash强大和丰富。并且dash不支持leti++等功能.

解决办法:sudo dpkg-reconfigure dash,选择"No", 表示用bash代替dash

参考

[1] Canal QuickStart[https://github.com/alibaba/canal/wiki/QuickStart]

[2] Canal Kafka RocketMQ QuickStart[https://github.com/alibaba/canal/wiki/Canal-Kafka-RocketMQ-QuickStart]

[3] 利用Canal投递MySQL Binlog到Kafka[https://www.jianshu.com/p/93d9018e2fa1]

[4] canal实时同步mysql表数据到Kafka[https://www.cnblogs.com/zpan2019/p/13323035.html]

更多关于大数据、分布式、存储、区块链、Linux相关文章请关注我的微信公众号:asympTech渐进线实验室
MySQL-Canal-Kafka数据复制详解Linux下搭建Kafka集群Linux下搭建ZooKeeper集群

以上是 MySQL-Canal-Kafka数据复制详解Linux下搭建Kafka集群Linux下搭建ZooKeeper集群 的全部内容, 来源链接: utcz.com/a/129635.html

回到顶部