python实现信息熵的计算代码

美女程序员鼓励师

1、什么是信息熵?

1948年香农提出了信息熵(Entropy)的概念。

信息理论:

1、从信息的完整性上进行的描述:

当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。

2、从信息的有序性上进行的描述:

当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。

“信息熵” (information entropy)是度量样本集合纯度最常用的一种指标。

二、python实现信息熵的计算代码

1、导入库

import numpy as np

import pandas as pd

2、 准备数据

data = pd.DataFrame(

    {'学历': ['专科', '专科', '专科', '专科', '专科', '本科', '本科', '本科', '本科', '本科',

     '研究生', '研究生', '研究生', '研究生', '研究生'],

     '婚否': ['否', '否', '是', '是', '否', '否', '否', '是', '否', '否', '否', '否', '是', '是', '否'],

     '是否有车': ['否', '否', '否', '是', '否', '否', '否', '是', '是', '是', '是', '是', '否', '否', 

     '否'],

     '收入水平': ['中', '高', '高', '中', '中', '中', '高', '高', '很高', '很高', '很高', '高', '高', 

     '很高', '中'],

     '类别': ['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否']})

3、定义信息熵函数

# 定义计算信息熵的函数:计算Infor(D)

def infor(data):

    a = pd.value_counts(data) / len(data)

    return sum(np.log2(a) * a * (-1))

4、数据测试

# print(infor(data["学历"]))   #测试结果为: 1.584962500721156

以上是 python实现信息熵的计算代码 的全部内容, 来源链接: utcz.com/z/543402.html

回到顶部