python中如何使用pandas.merge?

美女程序员鼓励师

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

1、pandas.merge

是pandas的全功能、高性能的的内存连接操作,在习惯上非常类似于SQL之类的关系数据库。

按照数据中具体的某一字段来连接数据,是 DataFrame之间类似于SQL的表连接操作。

2、merge的默认合并方法

merge用于表内部基于 index-on-index 和 index-on-column(s) 的合并,但默认是基于index来合并。

3、使用语法

pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, 

columns=None, chunksize=None)

4、使用参数

sql:SQL命令字符串;

con:连接sql数据库的,engine,一般可以用SQLalchemy或者pymysql之类的包建立;

index_col: 选择某一列作为index;

coerce_float:非常有用,将数字形式的字符串直接以float型读入;

parse_dates:将某一列日期型字符串转换为datetime型数据;

columns:要选取的列;

chunksize:如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就是提供的值的大小。

5、使用实例

import pandas;

from pandas import read_csv;

items = read_csv(

    "E:\\pythonlearning\\datacode\\firstpart\\4\\4.12\\data1.csv", 

    sep='|', 

    names=['id', 'comments', 'title']

);

prices = read_csv(

    "E://pythonlearning//datacode//firstpart//4//4.12//data2.csv", 

    sep='|', 

    names=['id', 'oldPrice', 'nowPrice']

);

itemPrices = pandas.merge(

    items, 

    prices, 

    left_on='id', 

    right_on='id'

);#以'id'列用基准,合并数据框

以上就是python中pandas.merge的使用方法,希望能对你有所帮助哟~

以上是 python中如何使用pandas.merge? 的全部内容, 来源链接: utcz.com/z/543109.html

回到顶部