基于Python来获取用户手机设备使用情况

基于Python来获取用户手机设备使用情况[Python基础]

前言

本博客为模式识别作业的记录,实现批感知器算法、Ho Kashyap算法和MSE多类扩展方法,可参考教材[ 1 ] color{#0000FF}{[1]}[1]。所用数据如下如所示:
在这里插入图片描述

批感知器算法

a = 0 mathbf a=0a=0开始迭代,分类ω 1 omega_1ω1ω 2 omega_2ω2并计算最终的解向量,记录下收敛的步数。

在这里插入图片描述

python;gutter:true;">import cv2

import numpy as np

from imutils import contours

from matplotlib import pyplot as plt

# 定义绘图函数

def imshow(name, img):

cv2.imshow(name, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

def num_cnts_sort(list,right=1,up=0):

# 传入的是找到的轮廓,返回的是排序好的轮廓外接矩阵的(x,y,w,h)

# up=1表示从上往下,right=1表示从左往右,-1表示反过来

reverse = False

if up==-1 or right== -1:

reverse = True

if up == 0:

# 左右方向排序 权重选x

i = 0

if right == 0:

i = 1

# 找到的轮廓用外接矩形框起来 cv2.boundingRect(c)返回x,y,w,h

boundingBoxs = [cv2.boundingRect(c) for c in list]

# sorted(输入序列,排序规则,reverse=True由小到大否则由大到小)

# lambda 匿名函数 输入序列的每个元素 输出b[i]

boxs = sorted(boundingBoxs,key= lambda b: b[i],reverse=reverse )

return boxs

def num_resize(img,w_size=0,h_size=0):

(h,w)=img.shape[0:2] # size返回总元素个数 和matlab不一样

if h_size != 0:

r = h_size/float(h)

w_size = int(r*w)

if w_size != 0:

r = w_size/float(w)

h_size = int(r*h)

resized = cv2.resize(img,(w_size,h_size))

return resized

# 读取模板图片

img_num = cv2.imread("images/ocr_a_reference.jpg")

# cv2.cvtColor获得图像的副本

img_num_gray = cv2.cvtColor(img_num, cv2.COLOR_BGR2GRAY)

imshow("img_num",img_num)

# cv2.threshold(输入图像,阈值,赋值,方法) 这里方法是高于阈值取0,低于阈值取255

# cv2.threshold返回两个值 第二个值是我需要的处理后的图像

img_num_bin = cv2.threshold(img_num_gray,10,255,cv2.THRESH_BINARY_INV)[1]

imshow("img_num_bin",img_num_bin)

# 获取轮廓

# cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标

# 返回的list中每个元素都是图像中的一个轮廓

num_cnts_list, _ =cv2.findContours(img_num_bin.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

"""

cv2.drawContours(img_num, num_cnts_list, -1, (0,0,255), 2)

imshow("draw_img_num",img_num_bin)

"""

# 对轮廓排序 并且返回论廓外接矩形的坐标

num_rect_list = num_cnts_sort(num_cnts_list)

# 验证排序正确

"""

for num_rect in num_rect_list:

(x,y,w,h)=num_rect

num_rect_img = cv2.rectangle(img_num.copy(),(x,y),(x+w,y+h),(255,0,0),2)

imshow("num_rect_img",num_rect_img)

"""

# 把图片和数字对应

num_rect_dic = {}

for (i,num_rect) in enumerate(num_rect_list):

(x, y, w, h) = num_rect

# 对图片像素点操作x,y要对调,因为dim=0存的是行 是x方向的像素信息

num_rect_item = img_num_bin[y:y+h,x:x+w]

num_rect_item = cv2.resize(num_rect_item,(57,88))

# 把数字和截下来的图像对应

num_rect_dic[i]=num_rect_item

imshow("num_rect_item", num_rect_item)

# 对银行卡图像预处理

# 读取图像

bank_img = cv2.imread("images/credit_card_01.jpg")

bank_img = num_resize(bank_img,h_size=200)

bank_img_gray = cv2.cvtColor(bank_img,cv2.COLOR_BGR2GRAY)

# bank_img_gray = num_resize(bank_img_gray,h_size=200)

# bank_img = cv2.resize(bank_img,bank_img_gray.shape)

imshow("bank_img",bank_img)

imshow("bank_img_gray",bank_img_gray)

# 定义卷积核

rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3)) # 矩形卷积核

sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))

# 顶帽操作 突出明亮的部分

bank_img_tophat = cv2.morphologyEx(bank_img_gray,cv2.MORPH_TOPHAT, rectKernel)

imshow("bank_img_tophat",bank_img_tophat)

# 对x方向边缘检测分支 然后二值化

def branch2(bank_img_tophat):

# X方向边缘检测处理 横线太浅 y方向边缘检测可能会消失

bank_img_grad = cv2.Sobel(bank_img_tophat, cv2.CV_32F, 1, 0, ksize=-1)

bank_img_grad_abs = np.absolute(bank_img_grad)

(max, min) = (np.max(bank_img_grad_abs), np.min(bank_img_grad_abs))

bank_img_grad_abs = (255 * (bank_img_grad_abs - min) / (max - min))

bank_img_grad_abs = bank_img_grad_abs.astype("uint8")

imshow("bank_img_grad_abs", bank_img_grad_abs)

return bank_img_grad_abs

bank_img_grad_abs = branch2(bank_img_tophat)

# 腐蚀与闭操作

bank_img_close = cv2.morphologyEx(bank_img_grad_abs,cv2.MORPH_DILATE,sqKernel)

bank_img_close = cv2.morphologyEx(bank_img_close,cv2.MORPH_CLOSE,sqKernel)

imshow("bank_img_close",bank_img_close)

bank_img_close= cv2.morphologyEx(bank_img_close,cv2.MORPH_CLOSE,sqKernel)

# 二值化 cv2.THRESH_OTSU会选择合适的阈值进行二值化 cv2.threshold返回的是两个元素 第二个是处理后的图像

bank_img_close_bin = cv2.threshold(bank_img_close, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]

imshow("double-close",bank_img_close_bin )

# 获取轮廓

bank_img_gray1 = bank_img_gray.copy()

bank_img_contour,_ = cv2.findContours(bank_img_close_bin,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

"""

cv2.drawContours(bank_img_gray,bank_img_contour,-1,(0,0,255),3)

imshow("contours",bank_img_gray)

"""

# 通过以下代码找到一组银行卡上的轮廓 计算大概的比例和长度

"""

(x,y,w,h) = cv2.boundingRect(bank_img_contour[4])

bank_img_draw = bank_img_gray

bank_img_draw = cv2.rectangle(bank_img_draw,(x,y),(x+w,y+h),(0,0,255),2)

imshow("1",bank_img_draw)

print("w="+str(w)+"h="+str(h),"r="+str(w/float(h)))

"""

# 获取轮廓外接矩形 并过滤不合格的轮廓

bank_img_real_contour=[]

for contour in bank_img_contour:

(x, y, w, h) = cv2.boundingRect(contour)

r = w / float(h)

if r > 2.5 and r < 4.0:

if w > 50 and w < 80 and h > 10 and h < 30:

bank_img_real_contour.append(contour)

# 画出来看看

img_draw = cv2.cvtColor(bank_img,1)

bank_draw = cv2.rectangle(img_draw, (x, y), (x + w, y + h), (0, 128, 128), 2)

imshow("s", bank_draw)

# 4个一组 获取对应二值图像

bank_img_list = []

# 把4组从左往右排序 返回每组的(x,y,w,h)

contour_list = num_cnts_sort(bank_img_real_contour)

for contour in contour_list:

(x, y, w, h) = contour

# 把每组的灰度图像填充5个像素截取下来

bank_img = bank_img_gray[(y - 5):(y + 5 + h), (x - 5):(x + 5 + w)]

# 二值化

bank_img = cv2.threshold(bank_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]

imshow("bank_img", bank_img)

bank_img_list.append(bank_img)

# 获取每个数字进行模板匹配

grade = []

for img in bank_img_list:

# 对包含4个数字的图片进行轮廓检测

bank_contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 对每个数字排序 返回的是每个轮廓外接矩形的(x,y,w,h)

bank_cont_rec = num_cnts_sort(bank_contours)

for i, rec in enumerate(bank_cont_rec):

(x, y, w, h) = rec

num = img[y:(y + h), x:(x + w)]

# 缩放到和模板一样大小

roi = cv2.resize(num, (57, 88))

item = 0

# 字典num_rect_dic存有数字和对应图像

for num in range(10):

# 模板匹配

num_img = num_rect_dic[num]

# 模板匹配

result = cv2.matchTemplate(roi, num_img, cv2.TM_CCOEFF)

(_, score, _, _) = cv2.minMaxLoc(result)

# 记下最大值,最贴近正确值得对应的 num

if score > item:

item = score

max = num

grade.append(str(max))

# cv2.putText(图像, 文字, 左下角坐标, 字体, 大小, 颜色, 字体粗细)

cv2.putText(img_draw, "".join(grade), (contour_list[0][0], contour_list[0][1] - 15), cv2.FONT_HERSHEY_PLAIN, 1,

(0, 255, 0), 1)

imshow("bank", img_draw)

# .join把序列的字符串和前面的拼在一起

print("银行卡号为" + "".join(grade))

以上是 基于Python来获取用户手机设备使用情况 的全部内容, 来源链接: utcz.com/z/537974.html

回到顶部