Hadoop单词计数(WordCount)的MapReduce实现orion

database

首先,Hadoop会把输入数据划分成等长的输入分片(input split) 或分片发送到MapReduce。Hadoop为每个分片创建一个map任务,由它来运行用户自定义的map函数以分析每个分片中的记录。在我们的单词计数例子中,输入是多个文件,一般一个文件对应一个分片,如果文件太大则会划分为多个分片。map函数的输入以

1.Map与Reduce过程

1.1 Map过程

首先,Hadoop会把输入数据划分成等长的输入分片(input split) 或分片发送到MapReduce。Hadoop为每个分片创建一个map任务,由它来运行用户自定义的map函数以分析每个分片中的记录。在我们的单词计数例子中,输入是多个文件,一般一个文件对应一个分片,如果文件太大则会划分为多个分片。map函数的输入以<key, value>形式做为输入,value为文件的每一行,key为该行在文件中的偏移量(一般我们会忽视)。这里map函数起到的作用为将每一行进行分词为多个word,并在context中写入<word, 1>以代表该单词出现一次。

map过程的示意图如下:

mapper代码编写如下:

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

//每次处理一行,一个mapper里的value为一行,key为该行在文件中的偏移量

StringTokenizer iter = new StringTokenizer(value.toString());

while (iter.hasMoreTokens()) {

word.set(iter.nextToken());

// 向context中写入<word, 1>

context.write(word, one);

System.out.println(word);

}

}

}

如果我们能够并行处理分片(不一定是完全并行),且分片是小块的数据,那么处理过程将会有一个好的负载平衡。但是如果分片太小,那么管理分片与map任务创建将会耗费太多时间。对于大多数作业,理想分片大小为一个HDFS块的大小,默认是64MB。

map任务的执行节点和输入数据的存储节点相同时,Hadoop的性能能达到最佳,这就是计算机系统中所谓的data locality optimization(数据局部性优化)。而最佳分片大小与块大小相同的原因就在于,它能够保证一个分片存储在单个节点上,再大就不能了。

1.2 Reduce过程

接下来我们看reducer的编写。reduce任务的多少并不是由输入大小来决定,而是需要人工单独指定的(默认为1个)。和上面map不同的是,reduce任务不再具有本地读取的优势————一个reduce任务的输入往往来自于所有mapper的输出,因此map和reduce之间的数据流被称为 shuffle(洗牌) 。Hadoop会先按照key-value对进行排序,然后将排序好的map的输出通过网络传输到reduce任务运行的节点,并在那里进行合并,然后传递到用户定义的reduce函数中。

reduce 函数示意图如下:

reducer代码编写如下:

 public static class IntSumReducer

extends Reducer<Text, IntWritable, Text, IntWritable>{

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException{

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

2.完整代码

2.1 项目架构

关于VSCode+Java+Maven+Hadoop开发环境搭建,可以参见我的博客《VSCode+Maven+Hadoop开发环境搭建》,此处不再赘述。这里展示我们的项目架构图:

Word-Count-Hadoop

├─ input

│ ├─ file1

│ ├─ file2

│ └─ file3

├─ output

├─ pom.xml

├─ src

│ └─ main

│ └─ java

│ └─ WordCount.java

└─ target

WordCount.java代码如下:

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount{

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

//每次处理一行,一个mapper里的value为一行,key为该行在文件中的偏移量

StringTokenizer iter = new StringTokenizer(value.toString());

while (iter.hasMoreTokens()) {

word.set(iter.nextToken());

// 向context中写入<word, 1>

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer<Text, IntWritable, Text, IntWritable>{

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException{

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception{

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word_count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

//此处的Combine操作意为即第每个mapper工作完了先局部reduce一下,最后再全局reduce

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

//第0个参数是输入目录,第1个参数是输出目录

//先判断output path是否存在,如果存在则删除

Path path = new Path(args[1]);//

FileSystem fileSystem = path.getFileSystem(conf);

if (fileSystem.exists(path)) {

fileSystem.delete(path, true);

}

//设置输入目录和输出目录

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true)?0:1);

}

}

pom.xml中记得配置Hadoop的依赖环境:

    ...

<!-- 集中定义版本号 -->

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>17</maven.compiler.source>

<maven.compiler.target>17</maven.compiler.target>

<hadoop.version>3.3.1</hadoop.version>

</properties>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.11</version>

<scope>test</scope>

</dependency>

<!-- 导入hadoop依赖环境 -->

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-common</artifactId>

<version>${hadoop.version}</version>

</dependency>

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-hdfs</artifactId>

<version>${hadoop.version}</version>

</dependency>

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-mapreduce-client-core</artifactId>

<version>${hadoop.version}</version>

</dependency>

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-client</artifactId>

<version>${hadoop.version}</version>

</dependency>

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-yarn-api</artifactId>

<version>${hadoop.version}</version>

</dependency>

</dependencies>

...

</project>

此外,因为我们的程序自带输入参数,我们还需要在VSCode的launch.json中配置输入参数intput(代表输入目录)和output(代表输出目录):

...

"args": [

"input",

"output"

],

...

编译运行完毕后,可以查看output文件夹下的part-r-00000文件:

David	1

Goodbye 1

Hello 3

Tom 1

World 2

可见我们的程序正确地完成了单词计数的功能。

参考

  • [1] Hadoop官方文档:MapReduce Tutorial
  • [2] White T. Hadoop: The definitive guide[M]. " O"Reilly Media, Inc.", 2012.
  • [3] Stack Overflow: What is the purpose of shuffling and sorting phase in the reducer in Map Reduce Programming?

数学是符号的艺术,音乐是上界的语言。

以上是 Hadoop单词计数(WordCount)的MapReduce实现orion 的全部内容, 来源链接: utcz.com/z/536564.html

回到顶部