ORM分组操作示例(与SQL语句的比较) [数据库教程]

database

class Employee(models.Model):

name = models.CharField(max_length=16)

age = models.IntegerField()

salary = models.IntegerField()

province = models.CharField(max_length=32)

dept = models.CharField(max_length=16)

def __str__(self):

return self.name

class Meta:

db_table = "employee"

 

  操作:

我们使用原生SQL语句,按照部分分组求平均工资:

select dept,AVG(salary) from employee group by dept;

ORM语句与SQL语句对应关系:

 

ORM查询:

  ret = models.Employee.objects.all()

print(ret)#<QuerySet [<Employee: 小黑>, <Employee: 小白>, <Employee: 赵导>, <Employee: 化工哥>]>

#(0.003) SELECT `employee`.`id`, `employee`.`name`, `employee`.`age`, `employee`.`salary`, `employee`.`province`, `employee`.`dept`
         FROM `employee` LIMIT 21; args=()

    ret = models.Employee.objects.values("dept")

print(ret)

# (0.002) SELECT `employee`.`dept` FROM `employee` LIMIT 21; args = ()

# < QuerySet[{‘dept‘: ‘保安部‘}, {‘dept‘: ‘影视部‘}, {‘dept‘: ‘影视部‘}, {‘dept‘: ‘福利部‘}] >

 ret = models.Employee.objects.values("dept").annotate(avg=Avg("salary")).values("dept","avg")

print(ret)

#(0.068) SELECT `employee`.`dept`, AVG(`employee`.`salary`) AS `avg` FROM `employee` GROUP BY `employee`.`dept` ORDER BY NULL LIMIT 21;

#<QuerySet [{‘dept‘: ‘保安部‘, ‘avg‘: 2000.0}, {‘dept‘: ‘影视部‘, ‘avg‘: 6500.0}, {‘dept‘: ‘福利部‘, ‘avg‘: 8000.0}]> 

多表操作

建表:

class Employee2(models.Model):

name = models.CharField(max_length=16)

age = models.IntegerField()

salary = models.IntegerField()

province = models.CharField(max_length=32)

dept = models.ForeignKey(to="Dept")

def __str__(self):

return self.name

class Meta:

db_table = "employee2"

class Dept(models.Model):

name = models.CharField(max_length=16, unique=True)

def __str__(self):

return self.name

class Meta:

db_table = "dept2"

 

  SQL查询:

select dept2.name,AVG(salary) from employee2 inner join dept2 on (employee2.dept_id=dept2.id) group by dept_id;

ORM查询:

from django.db.models import Avg

ret = models.Employee2.objects.values("dept_id").annotate(avg=Avg("salary")).values("dept__name","avg")

print(ret)

# < QuerySet[{‘dept__name‘: ‘保安部‘, ‘avg‘: 2000.0}, {‘dept__name‘: ‘影视部‘, ‘avg‘: 6500.0}, {‘dept__name‘: ‘福利部‘, ‘avg‘: 8000.0}] >

# (0.089) SELECT `dept2`.`name`,AVG(`employee2`.`salary`) AS `avg` FROM `employee2` INNER JOIN `dept2` ON(`employee2`.`dept_id` = `dept2`.id`)
GROUP BY `employee2`.`dept_id`,`dept2`.`name` ORDER BY NULL LIMIT 21;args = ()

# 查所有的员工和部门名称

ret = models.Employee2.objects.values("name", "dept__name")

print(ret)

#(0.012) SELECT `employee2`.`name`, `dept2`.`name` FROM `employee2` INNER JOIN `dept2` ON (`employee2`.`dept_id` = `dept2`.`id`) LIMIT 21;

#<QuerySet [{‘name‘: ‘小黑‘, ‘dept__name‘: ‘保安部‘}, {‘name‘: ‘小白‘, ‘dept__name‘: ‘影视部‘}, {‘name‘: ‘赵导‘, ‘dept__name‘: ‘影视部‘},
{‘name‘: ‘化工哥‘, ‘dept__name‘: ‘福利部‘}]>

select_related 和 prefetch_related 的使用

def select_related(self, *fields)

性能相关:表之间进行join连表操作,一次性获取关联的数据。

总结:

1. select_related主要针一对一和多对一关系进行优化。

2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。

def prefetch_related(self, *lookups)

性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。

总结:

1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。

select_related的使用示例

 #select_related的使用:表之间进行join连表操作,一次性获取关联的数据。

ret = models.Employee2.objects.select_related()

print(ret)

#(0.019) SELECT `employee2`.`id`, `employee2`.`name`, `employee2`.`age`, `employee2`.`salary`, `employee2`.`province`, `employee2`.`dept_id`,
`dept2`.`id`, `dept2`.`name` FROM `employee2` INNER JOIN `dept2` ON (`employee2`.`dept_id` = `dept2`.`id`) LIMIT 21; args=()

#<QuerySet [<Employee2: 小黑>, <Employee2: 小白>, <Employee2: 赵导>, <Employee2: 化工哥>]>

ret = models.Employee2.objects.select_related().values("name","dept__name")

print(ret)

#(0.020) SELECT `employee2`.`name`, `dept2`.`name` FROM `employee2` INNER JOIN `dept2` ON (`employee2`.`dept_id` = `dept2`.`id`) LIMIT 21;

#<QuerySet [{‘name‘: ‘小黑‘, ‘dept__name‘: ‘保安部‘}, {‘name‘: ‘小白‘, ‘dept__name‘: ‘影视部‘}, {‘name‘: ‘赵导‘, ‘dept__name‘: ‘影视部‘},
{‘name‘: ‘化工哥‘, ‘dept__name‘: ‘福利部‘}]>

  建立多对多关系表:

class Author(models.Model):

name = models.CharField(max_length=32)

books = models.ManyToManyField(to="Book")

def __str__(self):

return self.name

class Meta:

db_table = "author"

class Book(models.Model):

title = models.CharField(max_length=32)

def __str__(self):

return self.title

class Meta:

db_table = "book"

 

 ret = models.Author.objects.select_related("books__title").values("name", "books__title")

print(ret)

#(0.014) SELECT `author`.`name`, `book`.`title` FROM `author` LEFT OUTER JOIN `author_books` ON (`author`.`id` = `author_books`.`author_id`)
LEFT OUTER JOIN `book` ON (`author_books`.`book_id` = `book`.`id`) LIMIT 21; args=()

#<QuerySet [{‘name‘: ‘小黑‘, ‘books__title‘: ‘沙河出版社‘}, {‘name‘: ‘小白‘, ‘books__title‘: ‘沙河出版社‘}, {‘name‘: ‘小黑‘,
‘books__title‘: ‘光子出版社‘}, {‘name‘: ‘小黄‘, ‘books__title‘: ‘光子出版社‘}, {‘name‘: ‘小黑‘, ‘books__title‘: ‘番茄物语‘},
{‘name‘: ‘小白‘, ‘books__title‘: ‘番茄物语‘}, {‘name‘: ‘小黄‘, ‘books__title‘: ‘番茄物语‘}]>

批量操作

def bulk_create(self, objs, batch_size=None):

# 批量插入

# batch_size表示一次插入的个数

objs = [

models.DDD(name=‘r11‘),

models.DDD(name=‘r22‘)

]

models.DDD.objects.bulk_create(objs, 10)

示例:

    # 批量创建

# 有100个书籍对象

objs = [models.Book(title="沙河{}".format(i)) for i in range(6)]

#

# 在数据库中批量创建, 2次一提交

models.Book.objects.bulk_create(objs, 2)

ORM分组操作示例(与SQL语句的比较)

以上是 ORM分组操作示例(与SQL语句的比较) [数据库教程] 的全部内容, 来源链接: utcz.com/z/535232.html

回到顶部