HBaseFilter过滤器之DependentColumnFilter详解

database

前言:本文详细介绍了 HBase DependentColumnFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考。DependentColumnFilter 也称参考列过滤器,是一种允许用户指定一个参考列或引用列来过滤其他列的过滤器,过滤的原则是基于参考列的时间戳来进行筛选。

该过滤器尝试找到该列所在的每一行,并返回该行具有相同时间戳的全部键值对;如果某行不包含这个指定的列,则什么都不返回。参数dropDependentColumn 决定参考列被返回还是丢弃,为true时表示参考列被返回,为false时表示被丢弃。可以把DependentColumnFilter理解为一个valueFilter和一个时间戳过滤器的组合。如果想要获取同一时间线的数据可以考虑使用此过滤器。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习。

一。Java Api

头部代码

public class DependentColumnFilterDemo {

private static boolean isok = false;

private static String tableName = "test";

private static String[] cfs = new String[]{"f1", "f2"};

private static String[] data1 = new String[]{"row-1:f2:c3:1234abc56", "row-3:f1:c3:1234321"};

private static String[] data2 = new String[]{

"row-1:f1:c1:abcdefg", "row-1:f2:c2:abc", "row-2:f1:c1:abc123456", "row-2:f2:c2:1234abc567"

};

public static void main(String[] args) throws IOException, InterruptedException {

MyBase myBase = new MyBase();

Connection connection = myBase.createConnection();

if (isok) {

myBase.deleteTable(connection, tableName);

myBase.createTable(connection, tableName, cfs);

// 造数据

myBase.putRows(connection, tableName, data1); // 第一批数据

Thread.sleep(10);

myBase.putRows(connection, tableName, data2); // 第二批数据

}

Table table = connection.getTable(TableName.valueOf(tableName));

Scan scan = new Scan();

中部代码

向右滑动滚动条可查看输出结果。

        // 构造方法一

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1")); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

// 构造方法二 boolean dropDependentColumn=true

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true); // [row-1:f2:c2:abc, row-2:f2:c2:1234abc567]

// 构造方法二 boolean dropDependentColumn=false 默认为false

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

// 构造方法三 + BinaryComparator 比较器过滤数据

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,

CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("abcdefg"))); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc]

// 构造方法三 + BinaryPrefixComparator 比较器过滤数据

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,

CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("abc"))); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

// 构造方法三 + SubstringComparator 比较器过滤数据

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,

CompareFilter.CompareOp.EQUAL, new SubstringComparator("1234")); // [row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

// 构造方法三 + RegexStringComparator 比较器过滤数据

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,

CompareFilter.CompareOp.EQUAL, new RegexStringComparator("[a-z]")); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

// 构造方法三 + RegexStringComparator 比较器过滤数据

DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,

CompareFilter.CompareOp.EQUAL, new RegexStringComparator("1234[a-z]")); // [] 思考题:与上例对比,想想为什么为空?

该过滤器同时也支持各比较器的不同比较语法,同之前介绍的各种过滤器是一样的,这里不再一一举例了。

尾部代码

		scan.setFilter(filter);

ResultScanner scanner = table.getScanner(scan);

Iterator<Result> iterator = scanner.iterator();

LinkedList<String> keys = new LinkedList<>();

while (iterator.hasNext()) {

String key = "";

Result result = iterator.next();

for (Cell cell : result.rawCells()) {

byte[] rowkey = CellUtil.cloneRow(cell);

byte[] family = CellUtil.cloneFamily(cell);

byte[] column = CellUtil.cloneQualifier(cell);

byte[] value = CellUtil.cloneValue(cell);

key = Bytes.toString(rowkey) + ":" + Bytes.toString(family) + ":" + Bytes.toString(column) + ":" + Bytes.toString(value);

keys.add(key);

}

}

System.out.println(keys);

scanner.close();

table.close();

connection.close();

}

}

二。Shell Api

HBase test 表数据一览:

hbase(main):009:0> scan "test"

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-1 column=f2:c3, timestamp=1589794115241, value=1234abc56

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

row-3 column=f1:c3, timestamp=1589794115241, value=1234321

3 row(s) in 0.0280 seconds

0. 简单构造方法

hbase(main):006:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1")"}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0450 seconds

hbase(main):008:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",false)"}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0310 seconds

hbase(main):007:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",true)"}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0250 seconds

1. BinaryComparator 构造过滤器

方式一:

hbase(main):004:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",false,=,"binary:abcdefg")"}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

1 row(s) in 0.0330 seconds

hbase(main):005:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",true,=,"binary:abcdefg")"}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

1 row(s) in 0.0120 seconds

支持的比较运算符:= != > >= < <=,不再一一举例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.BinaryComparator

import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):016:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf("EQUAL"), BinaryComparator.new(Bytes.toBytes("abcdefg")))}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

1 row(s) in 0.0170 seconds

hbase(main):017:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf("EQUAL"), BinaryComparator.new(Bytes.toBytes("abcdefg")))}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

1 row(s) in 0.0140 seconds

支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

推荐使用方式一,更简洁方便。

2. BinaryPrefixComparator 构造过滤器

方式一:

hbase(main):019:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",false,=,"binaryprefix:abc")"}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0330 seconds

hbase(main):020:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",true,=,"binaryprefix:abc")"}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0600 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.BinaryPrefixComparator

import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):023:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf("EQUAL"), BinaryPrefixComparator.new(Bytes.toBytes("abc")))}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0180 seconds

hbase(main):022:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf("EQUAL"), BinaryPrefixComparator.new(Bytes.toBytes("abc")))}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0190 seconds

其它同上。

3. SubstringComparator 构造过滤器

方式一:

hbase(main):025:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",false,=,"substring:abc")"}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0340 seconds

hbase(main):024:0> scan "test",{FILTER=>"DependentColumnFilter("f1","c1",true,=,"substring:abc")"}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0160 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator

import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):028:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf("EQUAL"), SubstringComparator.new("abc"))}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0150 seconds

hbase(main):029:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf("EQUAL"), SubstringComparator.new("abc"))}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0170 seconds

区别于上的是这里直接传入字符串进行比较,且只支持EQUALNOT_EQUAL两种比较符。

4. RegexStringComparator 构造过滤器

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.RegexStringComparator

import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):035:0> scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf("EQUAL"), RegexStringComparator.new("[a-z]"))}

ROW COLUMN+CELL

row-1 column=f1:c1, timestamp=1589794115268, value=abcdefg

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f1:c1, timestamp=1589794115268, value=abc123456

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0170 seconds

hbase(main):034:0* scan "test",{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf("EQUAL"), RegexStringComparator.new("[a-z]"))}

ROW COLUMN+CELL

row-1 column=f2:c2, timestamp=1589794115268, value=abc

row-2 column=f2:c2, timestamp=1589794115268, value=1234abc567

2 row(s) in 0.0150 seconds

该比较器直接传入字符串进行比较,且只支持EQUALNOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

注意这里的正则匹配指包含关系,对应底层find()方法。

DependentColumnFilter不支持使用LongComparator比较器,且BitComparatorNullComparator比较器用之甚少,也不再介绍。

到此为止,所有的比较过滤器就总结完毕了。

查看文章全部源代码请访以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/DependentColumnFilterDemo.java

转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

以上是 HBaseFilter过滤器之DependentColumnFilter详解 的全部内容, 来源链接: utcz.com/z/533713.html

回到顶部