MySQL优化之执行计划

database

前言

研究SQL性能问题,其实本质就是优化索引,而优化索引,一个非常重要的工具就是执行计划(explain),它可以模拟SQL优化器执行SQL语句,从而让开发人员知道自己编写的SQL的运行情况。

执行计划语法

执行计划的语法非常简单,就是在要执行的SQL语句前加上explain即可。

以我们在上一篇文章中创建的student表为例:

mysql> explain select * from student where id = 1;

+----+-------------+---------+------------+-------+---------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+---------+------------+-------+---------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | student | NULL | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+---------+------------+-------+---------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

数据准备

为了更好的讲明白执行计划,我们将新建三张表,一张为employee表,一张为salary表,另一张为department表。其表结构以及数据如下:

employee表

e_id

e_name

d_id

1

zhang

1

2

wang

1

3

song

3

4

liu

2

5

wang

2

salary表

s_id

s_salary

1

11000

2

8000

3

6500

4

5000

5

7200

department 表

d_id

d_name

1

tech

2

HR

3

PD

三张表建表语句如下:

/* employee表创建 */

create table employee(

e_id int(4) auto_increment,

e_name varchar(20) default NULL,

d_id int(4),

primary key(e_id)

);

/* 创建索引 */

create unique index e_idx1 on employee(e_id);

create index e_idx2 on employee(e_name, d_id);

create index e_idx3 on employee(e_name);

/* salary表创建 */

create table salary(

s_id int(4),

s_salary decimal(15,2)

);

/* 创建索引 */

create unique index s_idx1 on salary(s_id);

create index s_idx2 on salary(s_salary);

/* department表创建 */

create table department(

d_id int(4),

d_name char(10) not NULL

);

/* 创建索引 */

create unique index d_idx1 on department(d_id);

create index d_idx2 on department(d_name);

/* employee表插入数据 */

insert into employee values(1, "zhang", 1);

insert into employee values(2, "wang", 1);

insert into employee values(3, "song", 3);

insert into employee values(4, "liu", 2);

insert into employee values(5, "wang", 2);

/* salary表插入数据 */

insert into salary values(1, 11000);

insert into salary values(2, 8000);

insert into salary values(3, 65000);

insert into salary values(4, 5000);

insert into salary values(5, 7200);

/* department 表插入数据 */

insert into department values(1, "tech");

insert into department values(2, "HR");

insert into department values(3, "PD");

如何去看执行计划

看执行计划,其实就是看explain所展示出来的列的含义。下面我们来逐一分析。

id

id用来表示SQL语句查询的顺序。它遵循三条原则:

id

值情况

执行顺序

常见场景

1

id相同

按顺序执行,从上往下

关联表查询

2

id不同

id值越大,执行优先级越高

子查询

3

NULL

表示为一个结果集,不需要用它来查询

union语句

为了说明id的情况,不妨做一个如下查询:查询HR部门,工资为5000的员工的名字。

我们很容易就能写出SQL语句:

mysql> select e.e_name from employee e, salary s, department d where e.e_id = s.s_id and e.d_id = d.d_id and s.s_salary = 5000 and d.d_name = "HR";

+--------+

| e_name |

+--------+

| liu |

+--------+

1 row in set (0.01 sec)

以上SQL语句没有问题,但是我们现在要研究的并不是这个语句本身,而是执行计划,所以加上执行计划再执行一遍:

mysql> explain select e.e_name from employee e, salary s, department d where e.e_id = s.s_id and e.d_id = d.d_id and s.s_salary = 5000 and d.d_name = "HR";

+----+-------------+-------+------------+--------+----------------+---------+---------+---------------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+-------+------------+--------+----------------+---------+---------+---------------+------+----------+-------------+

| 1 | SIMPLE | s | NULL | ref | s_idx1,s_idx2 | s_idx2 | 8 | const | 1 | 100.00 | Using where |

| 1 | SIMPLE | e | NULL | eq_ref | PRIMARY,e_idx1 | PRIMARY | 4 | testDB.s.s_id | 1 | 100.00 | Using where |

| 1 | SIMPLE | d | NULL | ref | d_idx1,d_idx2 | d_idx1 | 5 | testDB.e.d_id | 1 | 33.33 | Using where |

+----+-------------+-------+------------+--------+----------------+---------+---------+---------------+------+----------+-------------+

3 rows in set, 1 warning (0.00 sec)

从以上结果可以看到,三张表的id都为1,所以这三张表是按照从上往下的顺序执行的,即 s->e->d的顺序。不难看出,这个顺序和我们编写SQL的表的顺序是无关的。

注意:当id相同时,左连接和右连接可以破坏SQL的执行顺序。

如果id相同,执行顺序靠什么控制的?

答:如果id相同,和表中的数据条数有关。

如果我要查PD部门所有人的薪水情况,这次改用子查询的方式:

mysql> select s.* from salary s where s.s_id = (select e.e_id from employee e where e.d_id = (select d.d_id from department d where d.d_name = "PD"));

+------+----------+

| s_id | s_salary |

+------+----------+

| 3 | 65000.00 |

+------+----------+

1 row in set (0.00 sec)

其执行计划如下所示:

mysql> explain select s.* from salary s where s.s_id = (select e.e_id from employee e where e.d_id = (select d.d_id from department d where d.d_name = "PD"));

+----+-------------+-------+------------+-------+---------------+--------+---------+-------+------+----------+--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+-------+------------+-------+---------------+--------+---------+-------+------+----------+--------------------------+

| 1 | PRIMARY | s | NULL | const | s_idx1 | s_idx1 | 5 | const | 1 | 100.00 | NULL |

| 2 | SUBQUERY | e | NULL | index | NULL | e_idx2 | 68 | NULL | 5 | 20.00 | Using where; Using index |

| 3 | SUBQUERY | d | NULL | ref | d_idx2 | d_idx2 | 30 | const | 1 | 100.00 | NULL |

+----+-------------+-------+------------+-------+---------------+--------+---------+-------+------+----------+--------------------------+

3 rows in set, 1 warning (0.00 sec)

可以看到,id为1,2,3,分别对应的表为s,e,d,根据id越大,执行优先级越高的原则,执行顺序应该是d->e->s。至于原因,其实很好理解,按照常规思维,要查salary表,首先要从查employee表查出员工id,而要查employee表,则要先从department表查出部门id,因此,查询顺序就是先查department,再查employee,最后查salary。

接下来演示一个union查询的例子,如:查询employee表中id为1和5的员工信息:

mysql> select * from employee where e_id = 1 union select * from employee where e_id = 5;

+------+--------+------+

| e_id | e_name | d_id |

+------+--------+------+

| 1 | zhang | 1 |

| 5 | wang | 2 |

+------+--------+------+

2 rows in set (0.01 sec)

其执行计划如下:

mysql> explain select * from employee where e_id = 1 union select * from employee where e_id = 5;

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

| 1 | PRIMARY | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

| 2 | UNION | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

| NULL | UNION RESULT | <union1,2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | NULL | Using temporary |

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

3 rows in set, 1 warning (0.01 sec)

上例很好的说明了这个问题,从id的值,很直观就能看出SQL执行的顺序,先执行union的表,再执行前面的表,结果集通过UNION RESULT显示出来。

select_type

select_type按字面意思,就是查询类型。常见的查询类型有以下几种:

id

select_type

描述

常见场景

1

SIMPLE

不包含任何子查询或union查询

简单的单表查询

2

PRIMARY

包含子查询的最外层就是PRIMARY,意思为主查询语句

子查询

3

SUBQUERY

selectwhere中包含的子查询语句

子查询

4

DERIVED

from语句中包含的查询(衍生查询)

临时表

5

UNION

union查询的后一条查询语句

union查询

6

UNION RESULT

union查询的的结果集

union查询

SIMPLE

这个比较好举例,如下面的SQL语句,查询employee表中id为1的员工信息:

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

出现SIMPLE的关键是,只能有当前一张表单表查询,且不涉及任何子查询、union查询、临时表查询。

PRIMARY 和 SUBQUERY

这两个都是子查询中会出现的,仍然以上面那条子查询的SQL拿来分析:

mysql> explain select s.* from salary s where s.s_id = (select e.e_id from employee e where e.d_id = (select d.d_id from department d where d.d_name = "PD"));

+----+-------------+-------+------------+-------+---------------+--------+---------+-------+------+----------+--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+-------+------------+-------+---------------+--------+---------+-------+------+----------+--------------------------+

| 1 | PRIMARY | s | NULL | const | s_idx1 | s_idx1 | 5 | const | 1 | 100.00 | NULL |

| 2 | SUBQUERY | e | NULL | index | NULL | e_idx2 | 68 | NULL | 5 | 20.00 | Using where; Using index |

| 3 | SUBQUERY | d | NULL | ref | d_idx2 | d_idx2 | 30 | const | 1 | 100.00 | NULL |

+----+-------------+-------+------------+-------+---------------+--------+---------+-------+------+----------+--------------------------+

3 rows in set, 1 warning (0.00 sec)

e表和d表都是SUBQUERY,因为它们是子查询语句,而s表则是PRIMARY,则是因为s表示select要输出的表,所以属于主查询。

DERIVED

DERIVED一般出现在临时表中。一般分两种情况:

  • 当from子查询的衍生查询只有一张表时,该临时表就是DERIVED;
  • 当from子查询的衍生查询中,有union查询时,一般union的第一个查询为DERIVED.

    如下例所示:

mysql> explain select t.* from (select e_name from  employee where e_id = 1 union select e_name from  employee where e_id = 5)  t;

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 2 | 100.00 | NULL |

| 2 | DERIVED | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

| 3 | UNION | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

| NULL | UNION RESULT | <union2,3> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | NULL | Using temporary |

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

4 rows in set, 1 warning (0.00 sec)

UNION 和 UNION RESULT

仍然可以拿上面union查询的例子来分析:

mysql> explain select * from employee where e_id = 1 union select * from employee where e_id = 5;

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

| 1 | PRIMARY | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

| 2 | UNION | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

| NULL | UNION RESULT | <union1,2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | NULL | Using temporary |

+----+--------------+------------+------------+-------+----------------+---------+---------+-------+------+----------+-----------------+

3 rows in set, 1 warning (0.01 sec)

前面第一部分查询:select * from employee where e_id = 1,它给的是PRIMARY,第二张表的查询select * from employee where e_id = 5就是UNION。而它们的结果集则是UNION RESULT

table

table就是用到的表名,当有别名的时候,显示的是别名。

id

table

描述

常见场景

1

原表名

当表没有别名时,显示的就是表名本身

表没有别名

2

别名

当表有别名时,显示的就是别名

表定义有别名

3

union<m,n>

UNION查询时id为m和n的联表查询结果集的显示结果,m和n为id值

UNION查询

在前例中可以很明确的看到这点的演示。

如显示原表名:

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

显示别名:

mysql> explain select e.* from employee e where e.e_id = 1;

+----+-------------+-------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+-------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | e | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+-------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

从以上两个例子可以很明显的看出来,SQL语句一模一样,第二个语句只是加了一个别名,所以table列显示的就变成了别名。

partitions

partions指的是查询涉及到的分区,如果不涉及分区,则显示为NULL;如果有分区,则显示的是分区情况。

要讲这个,需要先说一下表分区的概念。表分区指的是在物理上不是一块内存,但是在逻辑上仍然是一张表。这样的好处是可以合理利用硬盘空间,从而提高效率。

查询mysql服务是否支持表分区:

mysql> show plugins;

创建分区表:

mysql> create table tb_partition(

-> id int(4) auto_increment,

-> name varchar(20),

-> passwd char(20),

-> primary key(id)

-> )PARTITION BY HASH(id)

-> PARTITIONS 4

-> ;

Query OK, 0 rows affected (0.59 sec)

注意,按Hash分区时,分区的字段一定要是int型,且为主键,如果不是,则要将其转为主键才能分区成功。

关于表分区的更多内容,请参考这篇文章:MySQL分区表

partitions字段可以有以下取值:

id

partitions

描述

1

NULL

没有表分区,或有表分区但是查询数据不存在时

2

所有表分区均显示出来

查询所有数据,或所查询出来的数据覆盖到了所有的分区

3

显示具体表分区

表里有数据,显示为当前数据所在的表分区

示例1:没有表分区,显示为NULL。

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

示例2:有表分区,但是查询的结果为空。

mysql> explain select * from tb_partition where id = 10;

+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+--------------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+--------------------------------+

| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | no matching row in const table |

+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+--------------------------------+

1 row in set, 1 warning (0.00 sec)

注意此时,它所展示的table也为NULL,这点在前文没有讲到,说明当使用到分区表,且查询数据不存在时,table取值为NULL。

示例3:查询表中所有数据,显示所有表分区。

mysql> explain select * from tb_partition;

+----+-------------+--------------+-------------+------+---------------+------+---------+------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+--------------+-------------+------+---------------+------+---------+------+------+----------+-------+

| 1 | SIMPLE | tb_partition | p0,p1,p2,p3 | ALL | NULL | NULL | NULL | NULL | 4 | 100.00 | NULL |

+----+-------------+--------------+-------------+------+---------------+------+---------+------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

示例4:查询结果存在,显示数据所在的分区。

先插入几条数据:

insert into tb_partition values(1,"zhangsan", "123456");

insert into tb_partition values(2,"lisi", "123123");

insert into tb_partition values(3,"mayun", "123321");

insert into tb_partition values(4,"trump", "654321");

再执行查询语句:

mysql> explain select * from tb_partition where id = 1;

+----+-------------+--------------+------------+-------+---------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+--------------+------------+-------+---------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | tb_partition | p1 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+--------------+------------+-------+---------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

此时显示的分区是p1,也就是id = 1那条数据所在的分区。如果查询的结果不止一条,则显示所有数据的分区,这点应该不难想象,就不示例了。

type

type在SQL优化中是一个很重要的概念,SQL语句好不好,和该字段展示的值有很大关系。type的值有很多,常见的有以下这几种:

id

type

描述

1

SYSTEM

连接类型的特例,表中只有一条数据,相当于系统表

2

CONST

根据主键或唯一索引的主键查询查询结果只有1条记录

3

eq_ref

唯一索引扫描,对于每个索引键,只有一条记录与之对应

4

ref

针对非唯一或非主键索引,查询的结果可以有多条或0条

5

range

使用索引范围查询

6

index

遍历索引,只查询索引列,无须回表查询

7

ALL

全局扫描,当表没有索引或没用到索引时会出现,基本上等于没有任何优化

以上所列的顺序,基本上就是性能效率从高到低的排列顺序,即SYSTEM>CONST>eq_ref>ref>range>index>ALL。

需要注意的是,type字段针对的是索引列,当表中不存在索引时,此时不管表中有多少数据,type都是ALL。实际的优化过程中,system和const级别都是可遇不可求的,能够达到ref级别,就说明已经达到了优化的效果。

system

这种情况一般很难达到,只有当查询系统表,衍生表只有一条数据的主查询时能够达到这个级别。

const

一般根据主键去做的单表查询,type都是这个级别。

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

需要注意的是,当使用复合索引作为唯一索引的时候,必须复合索引中所有的列都用到,才能是const。

eq_ref

唯一性索引,对于每个索引键的查询,返回匹配唯一行数据(有且仅有1个,不能多个,不能0个),常见于唯一索引和主键索引。

mysql> explain select e.e_id from employee e, salary s where e.e_id = s.s_id;

+----+-------------+-------+------------+-------+----------------+--------+---------+---------------+------+----------+----------

---+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+-------+------------+-------+----------------+--------+---------+---------------+------+----------+----------

---+

| 1 | SIMPLE | e | NULL | index | PRIMARY,e_idx1 | e_idx1 | 4 | NULL | 5 | 100.00 | Using ind

ex |

| 1 | SIMPLE | s | NULL | ref | s_idx1 | s_idx1 | 5 | testDB.e.e_id | 1 | 100.00 | Using ind

ex |

+----+-------------+-------+------------+-------+----------------+--------+---------+---------------+------+----------+----------

---+

疑问:为啥出来的不是eq_ref?

ref

ref通常针对普通索引,通过索引查询出多条数据或0条数据。

mysql> explain select * from employee where e_name = "zhangsan";

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | ref | e_idx2,e_idx3 | e_idx2 | 63 | const | 1 | 100.00 | Using index |

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

以上是查询有结果的情况,接下来看查询结果为0条的情况:

mysql> explain select * from employee where e_name = "none";

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | ref | e_idx2,e_idx3 | e_idx2 | 63 | const | 1 | 100.00 | Using index |

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

range

根据索引查询的条件为一个范围,如>,<,between ... and, like等。

我们仍然看以下几个示例:

/*情形一:使用大于的情况*/

mysql> explain select * from employee where e_id > 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | range | PRIMARY,e_idx1 | PRIMARY | 4 | NULL | 4 | 100.00 | Using where |

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

/*情形二: 使用between ... and*/

mysql> explain select * from employee where e_id between 1 and 5;

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | range | PRIMARY,e_idx1 | PRIMARY | 4 | NULL | 5 | 100.00 | Using where |

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

1 row in set, 1 warning (0.01 sec)

/*情形三: 使用like*/

mysql> explain select * from employee where e_name like "zh%";

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+--------------------------+

| 1 | SIMPLE | employee | NULL | range | e_idx2,e_idx3 | e_idx2 | 63 | NULL | 1 | 100.00 | Using where; Using index |

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+--------------------------+

1 row in set, 1 warning (0.02 sec)

需要注意的是,不等于号<>(或 !=),in 语法在实际测试中使用到的是index级别的索引,而非range,说明<> 和in实际上使索引级别下降了,因此,在上一篇文章中,在索引注意事项中,才会有尽量避免使用in和not in的说明。

同样,like 的百分号%最好跟在后面,而不是前面,也是一样的道理,在实际测试中,当前面有%时,索引级别也会降为index。

/*不等号<>测试*/

mysql> explain select * from employee where e_id <> 3;

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+----------------

----------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+----------------

----------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1 | e_idx2 | 68 | NULL | 5 | 80.00 | Using where; Us

ing index |

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+----------------

----------+

1 row in set, 1 warning (0.00 sec)

/*in 测试*/

mysql> explain select * from employee where e_id in (1,2,3);

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+--------------------------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1 | e_idx2 | 68 | NULL | 5 | 60.00 | Using where; Using index |

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+--------------------------+

1 row in set, 1 warning (0.00 sec)

/* like 百分号测试 */

mysql> explain select * from employee where e_name like "%san%";

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+--------------------------+

| 1 | SIMPLE | employee | NULL | index | NULL | e_idx2 | 68 | NULL | 5 | 20.00 | Using where; Using index |

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+--------------------------+

1 row in set, 1 warning (0.00 sec)

index

index指的是索引扫描树,只要走到了索引,基本上都是这一级别,该级别仅仅比ALL高一点。

如下面这种情况:

mysql> explain select * from employee where d_id = 3;

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+-----------------

---------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+-----------------

---------+

| 1 | SIMPLE | employee | NULL | index | NULL | e_idx2 | 68 | NULL | 5 | 20.00 | Using where; Usi

ng index |

+----+-------------+----------+------------+-------+---------------+--------+---------+------+------+----------+-----------------

---------+

1 row in set, 1 warning (0.00 sec)

ALL

ALL就是全表扫描,这是最差的一种情况,等于没有任何优化,一般当所查询的字段没有索引时,使用到的就是该级别。

如:

mysql> explain select * from salary;

+----+-------------+--------+------------+------+---------------+------+---------+------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+--------+------------+------+---------------+------+---------+------+------+----------+-------+

| 1 | SIMPLE | salary | NULL | ALL | NULL | NULL | NULL | NULL | 5 | 100.00 | NULL |

+----+-------------+--------+------------+------+---------------+------+---------+------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

possible_keys 和 key

possible key和key可以放在一起来讲。顾名思义,possible key就是可能用到的索引,而key则是实际用到的索引。这二者并不一定是相同的。举一个例子:

mysql> explain select * from employee where e_id = 1 and e_name = "zhang";

+----+-------------+----------+------------+-------+------------------------------+---------+---------+-------+------+----------+

-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |

Extra |

+----+-------------+----------+------------+-------+------------------------------+---------+---------+-------+------+----------+

-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1,e_idx2,e_idx3 | PRIMARY | 4 | const | 1 | 100.00 |

NULL |

+----+-------------+----------+------------+-------+------------------------------+---------+---------+-------+------+----------+

-------+

可以看到,它列举出的可能走到的索引,包括PRIMARY,e_idx1,e_idx2,e_idx3,而实际上,只使用到了PRIMARY。

为什么会这样呢?我们先来看一下employee表的索引:

mysql> show index from employee;

+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+-----------

-+---------+---------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type

| Comment | Index_comment |

+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+-----------

-+---------+---------------+

| employee | 0 | PRIMARY | 1 | e_id | A | 5 | NULL | NULL | | BTREE

| | |

| employee | 0 | e_idx1 | 1 | e_id | A | 5 | NULL | NULL | | BTREE

| | |

| employee | 1 | e_idx2 | 1 | e_name | A | 4 | NULL | NULL | YES | BTREE

| | |

| employee | 1 | e_idx2 | 2 | d_id | A | 5 | NULL | NULL | YES | BTREE

| | |

| employee | 1 | e_idx3 | 1 | e_name | A | 4 | NULL | NULL | YES | BTREE

| | |

+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+-----------

-+---------+---------------+

5 rows in set (0.00 sec)

可以看到,where条件中,e_id字段涉及到了PRIMARY和e_idx1两个索引,e_name涉及到了e_idx2和e_idx3两个索引,所以,由于这两个字段出现在了where条件中,理论上这四个索引都会出现。而事实上,因为根据PRIMARY索引查e_id就直接能查出结果,所以后面的索引自然就用不上了。

key_len

key_len代表的是索引字段的长度,其计算方法是:

key_len = 索引字段实际长度 + (可以为null)1 + (varchar)2

仍然以employee表为例加以说明。先看一下employee表的表结构:

mysql> desc employee;

+--------+-------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+----------------+

| e_id | int(4) | NO | PRI | NULL | auto_increment |

| e_name | varchar(20) | YES | MUL | NULL | |

| d_id | int(4) | YES | | NULL | |

+--------+-------------+------+-----+---------+----------------+

3 rows in set (0.01 sec)

可以看出,e_id要求是非null的,而e_name和d_id都可以是null。

因此,我们查询以下sql语句的执行计划:

mysql> show index from employee;

+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+-----------

-+---------+---------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type

| Comment | Index_comment |

+----------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+-----------

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

/*

* 该条SQL实际用到的是PRIMARY索引,也就是e_id,该字段长度为int(4),要求not null,所以key_len = 4.

*/

mysql> explain select * from employee where e_name = "zhang";

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | ref | e_idx2,e_idx3 | e_idx2 | 63 | const | 1 | 100.00 | Using index |

+----+-------------+----------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

/*

*该SQL实际使用到的索引为e_idx2,该索引的字段是e_name,由于该字段数据类型为varchar,且可以为空,所以key_len = 20*3(utf8字符长度) + 2(varchar) + 1(可以为null) = 63。

注意:字符长度关系为:

utf8每个字符3字节

gbk每个字符2字节

latin1每个字符1字节

*/

接下来看一个索引字段数据类型为char的例子:

mysql> show index from department;

+------------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+---------

---+---------+---------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_ty

pe | Comment | Index_comment |

+------------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+---------

---+---------+---------------+

| department | 0 | d_idx1 | 1 | d_id | A | 3 | NULL | NULL | YES | BTREE

| | |

| department | 1 | d_idx2 | 1 | d_name | A | 3 | NULL | NULL | | BTREE

| | |

+------------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+---------

---+---------+---------------+

2 rows in set (0.00 sec)

mysql> desc department;

+--------+----------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+----------+------+-----+---------+-------+

| d_id | int(4) | YES | UNI | NULL | |

| d_name | char(10) | NO | MUL | NULL | |

+--------+----------+------+-----+---------+-------+

2 rows in set (0.00 sec)

查询SQL如下:

mysql> explain select * from department where d_name = "HR";

+----+-------------+------------+------------+------+---------------+--------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+------------+------------+------+---------------+--------+---------+-------+------+----------+-------+

| 1 | SIMPLE | department | NULL | ref | d_idx2 | d_idx2 | 30 | const | 1 | 100.00 | NULL |

+----+-------------+------------+------------+------+---------------+--------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

由于d_name字段要求not null,非变长,所以只需要计算字符长度即可,即:key_len = 20*3 = 60.

观察key_len,通常可以用于判断表走到了哪个索引,尤其对于复合索引,可以非常直观的看出其是否走了复合索引的全字段。

为了说明该问题,我们重新建一张表test01:

mysql> create table test01(

-> id int(4),

-> name varchar(20),

-> passwd char(20),

-> inf char(50));

Query OK, 0 rows affected (0.19 sec)

--创建复合索引

mysql> create index t_idx1 on test01(id, name, passwd);

Query OK, 0 rows affected (0.16 sec)

Records: 0 Duplicates: 0 Warnings: 0

--插入1条数据

mysql> insert into test01 values(1,"zz", "123456", "asdfgh");

Query OK, 1 row affected (0.04 sec)

通过观察,我们知道,如果走到该索引的所有字段,该索引长度应为: (4 + 1) + (20 * 3 + 2 + 1) + (20 * 3 + 1) = 129。

我们先来看两个正常走到全索引的例子:

mysql> explain select * from test01 where id = 1 and name = "zz" and passwd = "123";

+----+-------------+--------+------------+------+---------------+--------+---------+-------------------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+--------+------------+------+---------------+--------+---------+-------------------+------+----------+-------+

| 1 | SIMPLE | test01 | NULL | ref | t_idx1 | t_idx1 | 129 | const,const,const | 1 | 100.00 | NULL

|

+----+-------------+--------+------------+------+---------------+--------+---------+-------------------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

mysql> explain select passwd from test01 where name = "zz" and passwd = "123";

+----+-------------+--------+------------+-------+---------------+--------+---------+------+------+----------+-------------------

-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+--------+------------+-------+---------------+--------+---------+------+------+----------+-------------------

-------+

| 1 | SIMPLE | test01 | NULL | index | NULL | t_idx1 | 129 | NULL | 1 | 100.00 | Using where; Using

index |

+----+-------------+--------+------------+-------+---------------+--------+---------+------+------+----------+-------------------

-------+

1 row in set, 1 warning (0.00 sec)

mysql> explain select passwd from test01 where passwd = "123";

+----+-------------+--------+------------+-------+---------------+--------+---------+------+------+----------+-------------------

-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+--------+------------+-------+---------------+--------+---------+------+------+----------+-------------------

-------+

| 1 | SIMPLE | test01 | NULL | index | NULL | t_idx1 | 129 | NULL | 1 | 100.00 | Using where; Using

index |

+----+-------------+--------+------------+-------+---------------+--------+---------+------+------+----------+-------------------

-------+

1 row in set, 1 warning (0.00 sec)

以上三条SQL,无论是id = 1 and name = "zz" and passwd = "123", 还是name = "zz" and passwd = "123",或者passwd = "123",实际在查询中,都要按顺序将三个字段全部查到,因此都是129。

但是如果把SQL改成如下写法:

mysql> explain select passwd from test01 where id = 1 and name = "zz";

+----+-------------+--------+------------+------+---------------+--------+---------+-------------+------+----------+-------------

+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+--------+------------+------+---------------+--------+---------+-------------+------+----------+-------------

+

| 1 | SIMPLE | test01 | NULL | ref | t_idx1 | t_idx1 | 68 | const,const | 1 | 100.00 | Using index

|

+----+-------------+--------+------------+------+---------------+--------+---------+-------------+------+----------+-------------

+

1 row in set, 1 warning (0.00 sec)

发现虽然type的级别仍然是ref,走到的索引也仍然是t_idx1,但是key_len 却只有68,也就是id和name的长度,passwd字段虽然也在索引里,但是由于不在条件里,因此就没有走到。

同理,下面的SQL也是一样的道理,因为只用到了id,所以key_len只有5.

mysql> explain select passwd from test01 where id = 1;

+----+-------------+--------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+--------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

| 1 | SIMPLE | test01 | NULL | ref | t_idx1 | t_idx1 | 5 | const | 1 | 100.00 | Using index |

+----+-------------+--------+------------+------+---------------+--------+---------+-------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

但是我们需要注意的是下面这种情况:

mysql> explain select passwd from test01 where id = 1 and passwd = "123";

+----+-------------+--------+------------+------+---------------+--------+---------+-------+------+----------+-------------------

-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+--------+------------+------+---------------+--------+---------+-------+------+----------+-------------------

-------+

| 1 | SIMPLE | test01 | NULL | ref | t_idx1 | t_idx1 | 5 | const | 1 | 100.00 | Using where; Using

index |

+----+-------------+--------+------------+------+---------------+--------+---------+-------+------+----------+-------------------

-------+

我们在where条件里带了id和passwd,但并不如我们想象中的key_len = 66,而是等于5,也就是说,它实际只用到了id字段,而并没有用到passwd。

造成这种情况的原因在于,复合索引是严格按照复合索引中字段的先后顺序执行的,因此要求我们写SQL的时候,也要按照复合索引的顺序去书写(参见上一篇文章SQL优化初探-索引)

ref

注意此处的ref和前面type里出现的ref并不是同一个意思。这里的ref代表的是索引关联了哪个字段。

常用取值有:

id

ref

说明

1

NULL

没有用到任何字段

2

const

某个具体的值

3

具体某张表的字段值

一般用于关联语句中

下面仍然以例子来说明:

-- 具体的数值:const

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

--不等于任何值

mysql> explain select * from employee where e_id < 5;

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | range | PRIMARY,e_idx1 | PRIMARY | 4 | NULL | 4 | 100.00 | Using where |

+----+-------------+----------+------------+-------+----------------+---------+---------+------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

--某个具体字段

mysql> explain select * from employee where e_id in (select s_id from salary);

+----+-------------+----------+------------+-------+----------------+--------+---------+----------------------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+--------+---------+----------------------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1 | e_idx2 | 68 | NULL | 5 | 100.00 | Using index |

| 1 | SIMPLE | salary | NULL | ref | s_idx1 | s_idx1 | 5 | testDB.employee.e_id | 1 | 100.00 | Using index |

+----+-------------+----------+------------+-------+----------------+--------+---------+----------------------+------+----------+-------------+

2 rows in set, 1 warning (0.02 sec)

rows

通过索引返回的数据条数。

filtered

返回结果的行数占读取行数的百分比,该数值越大越好。

如:

mysql> explain select * from employee where e_id = 1;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | NULL |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------+

1 row in set, 1 warning (0.00 sec)

mysql> select * from employee where e_id = 1;

+------+--------+------+

| e_id | e_name | d_id |

+------+--------+------+

| 1 | zhang | 1 |

+------+--------+------+

1 row in set (0.00 sec)

查询结果为1条,而rows也为1条,因此filtered = 1/1 = 100%.

再看下面这个例子:

mysql> explain select * from employee where e_id < 3;

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+--------------------------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1 | e_idx2 | 68 | NULL | 5 | 40.00 | Using where; Using index |

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+--------------------------+

1 row in set, 1 warning (0.00 sec)

mysql> select * from employee where e_id < 3;

+------+--------+------+

| e_id | e_name | d_id |

+------+--------+------+

| 2 | wang | 1 |

| 1 | zhang | 1 |

+------+--------+------+

2 rows in set (0.00 sec)

实际查询结果为2条,rows = 5条,因此filtered = 2/5 = 40%。

Extra

Extra是额外信息的意思。常见的值如下:

id

Extra

说明

常见场景

1

use filesort

MySQL会对数据使用非索引进行排序

通常见于order by

2

use temporary

使用临时中间表保存数据

通常见于group by

3

use index

select语句中使用了索引覆盖,避免回表访问

常见于select的字段只有索引字段

4

use where

需要回表查询

常见于where子句

以上四种情形,use filesort 和 use temporary 是比较糟糕的情况,一般出现这两种,意味着SQL需要优化;

而如果出现use index,则说明SQL性能比较好,通常意味着效率比较高。

下面仍然以例子来说明:

mysql> explain select e_id from employee where e_id < 3 order by d_id;

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+----------------

--------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+----------------

--------------------------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1 | e_idx2 | 68 | NULL | 5 | 40.00 | Using where; Us

ing index; Using filesort |

+----+-------------+----------+------------+-------+----------------+--------+---------+------+------+----------+----------------

--------------------------+

1 row in set, 1 warning (0.00 sec)

以上SQL中出现了Using filesort,探究其原因,是因为查询的where条件是e_id,而order by的字段却是d_id。

在上一篇文章中提到了SQL的解析过程为:

from ... on ... join ... where ... group by ... having ... select [distinct] ... order by ... limit ...;

这就意味着,在根据e_id查询出e_id后,还需要根据d_id进行排序,而d_id是未知的,这也就意味着有另外一次额外的查询。

再来看第二个例子:

mysql> explain select d_id from employee where e_id < 3 group by d_id;

+----+-------------+----------+------------+-------+-----------------------+--------+---------+------+------+----------+-----------------------------------------------------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+----------+------------+-------+-----------------------+--------+---------+------+------+----------+-----------------------------------------------------------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1,e_idx2 | e_idx2 | 68 | NULL | 5 | 40.00 | Using where; Using index; Using temporary; Using filesort |

+----+-------------+----------+------------+-------+-----------------------+--------+---------+------+------+----------+-----------------------------------------------------------+

1 row in set, 1 warning (0.01 sec)

上句出现了Using temporary,原因就是因为查询时使用的索引是e_id,但group by分组时,使用的却是d_id,因此,需要额外的临时空间来进行分组操作,所以就出现了Using temporary。

如果把上面语句改一下:

mysql> explain select d_id from employee where e_id < 3 group by e_id;

+----+-------------+----------+------------+-------+------------------------------+---------+---------+------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |

Extra |

+----+-------------+----------+------------+-------+------------------------------+---------+---------+------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | index | PRIMARY,e_idx1,e_idx2,e_idx3 | PRIMARY | 4 | NULL | 5 | 40.00 |

Using where |

+----+-------------+----------+------------+-------+------------------------------+---------+---------+------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

此时出现的是Using where,而没有了之前的Using temporary。正是因为不再使用额外空间了的缘故。

最后来看这样一个例子:

mysql> explain select e_id from employee where e_id = 3;

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------------+

| 1 | SIMPLE | employee | NULL | const | PRIMARY,e_idx1 | PRIMARY | 4 | const | 1 | 100.00 | Using index |

+----+-------------+----------+------------+-------+----------------+---------+---------+-------+------+----------+-------------+

1 row in set, 1 warning (0.00 sec)

此时出现的是Using index,说明在索引树里就能查询到所需要的结果,不需要回表查询,效率当然会很高了。

小结

关于执行计划,由于MySQL版本的不同,展示的字段也有所不同,比如MySQL5.5就没有partitions和filtered字段的展示。对于某些字段的含义也不尽相同。如MySQL5.5中,根据唯一索引查询到的记录为0条,type值为ref,但是在MySQL5.7中,type为eq_ref。这些细微的区别其实并不影响对执行计划的解读,只需要在使用的过程中稍加注意就行了。于实际SQL的优化并没有太大的影响。

总之,执行计划只是一个分析性能的工具,掌握该工具并不在于死记硬背,而在于探索和实践。

以上是 MySQL优化之执行计划 的全部内容, 来源链接: utcz.com/z/532902.html

回到顶部