redis5.0.7源码阅读——字典dict
redis中字典相关的文件为:dict.h与dict.c
与其说是一个字典,道不如说是一个哈希表。
一、数据结构
dictEntry
1 typedef struct dictEntry { 2void *key; 3 union { 4void *val; 5 uint64_t u64; 6 int64_t s64; 7double d; 8 } v; 9struct dictEntry *next;10 } dictEntry;
dictEntry是一个kv对的单向链表,其中v是一个联合体,支持数字,或者是指向一块内存的指针。
1/*2+---------------+
3|void *key |
4+---------------+
5|union{...} v |
6+---------------+
7|dictEntry *next|---+
8+---------------+ |
9 |
10+---------------+ <-+
11|void *key |
12+---------------+
13|union{...} v |
14+---------------+
15|dictEntry *next|
16+---------------+
17*/
为了节约篇幅,后续用以下结构表示:
1/*2+---+ +---+
3|K|V|->|K|V|->NULL
4+---+ +---+
5*/
dictht
1 typedef struct dictht { 2 dictEntry **table; 3 unsigned long size; 4/*5 这样写可能更容易理解
6 const unsigned long size = 4;
7 dictEntry *table[size];
8*/
9
10
11 unsigned long sizemask;
12//sizemask,始终为size-1
13
14 unsigned long used;
15//当前总dictEntry数量
16 } dictht;
dictht是一个hash table,整体结构大致为:
1/*2+----------------------+ +---> +-----------------+ +---+
3|dictEntry **table |---+ |dictEntry *bucket|->|K|V|->NULL
4+----------------------+ +-----------------+ +---+
5|unsigned long size = 4| |dictEntry *bucket|->NULL
6+----------------------+ +-----------------+
7|unsigned long sizemask| |dictEntry *bucket|->NULL
8+----------------------+ +-----------------+
9|unsigned long used | |dictEntry *bucket|->NULL
10+----------------------+ +-----------------+
11*/
其中,table指向大小为sizeof(dictEntry*) * size的一片内存空间,每个dictEntry*可以视为一个bucket,每个bucket下挂着一个dictEntry单向链表。
size的值始终为2的位数,而sizemask的值始终为size-1,其作用是决定kv对要挂在哪个bucket上。
举个例子,size=4时,sizemask=3,其二进制为 0011,若通过hash函数计算出来key对应的hash值hash_value为5,二进制为0101,则通过位运算 sizemask & hash_value = 0011 & 0101 = 0001,十进制为1,则将会挂在idx = 1的bucket上。
dictType
1 typedef struct dictType {2 uint64_t (*hashFunction)(constvoid *key);3void *(*keyDup)(void *privdata, constvoid *key);4void *(*valDup)(void *privdata, constvoid *obj);5int (*keyCompare)(void *privdata, constvoid *key1, constvoid *key2);6void (*keyDestructor)(void *privdata, void *key);7void (*valDestructor)(void *privdata, void *obj);8 } dictType;
dictType用于自定义一些操作的方法,如拷贝key、拷贝value、销毁key、销毁value,比较key,以及hash函数。
dict
1 typedef struct dict {2 dictType *type;3void *privdata;4 dictht ht[2];5long rehashidx; /* rehashing not in progress if rehashidx == -1 */6 unsigned long iterators; /* number of iterators currently running */
7 } dict;
之前提到的dictType与dictht都是dict的成员变量。除此之外,还有privdata,是在创建dict的时候调用者传入,用于特定操作时回传给函数的。如:
1#define dictFreeVal(d, entry)2if ((d)->type->valDestructor)
3 (d)->type->valDestructor((d)->privdata, (entry)->v.val)
4
5#define dictSetVal(d, entry, _val_) do {
6if ((d)->type->valDup)
7 (entry)->v.val = (d)->type->valDup((d)->privdata, _val_);
8else
9 (entry)->v.val = (_val_);
10 } while(0)
11
12#define dictSetSignedIntegerVal(entry, _val_)
13do { (entry)->v.s64 = _val_; } while(0)
14
15#define dictSetUnsignedIntegerVal(entry, _val_)
16do { (entry)->v.u64 = _val_; } while(0)
17
18#define dictSetDoubleVal(entry, _val_)
19do { (entry)->v.d = _val_; } while(0)
20
21#define dictFreeKey(d, entry)
22if ((d)->type->keyDestructor)
23 (d)->type->keyDestructor((d)->privdata, (entry)->key)
24
25#define dictSetKey(d, entry, _key_) do {
26if ((d)->type->keyDup)
27 (entry)->key = (d)->type->keyDup((d)->privdata, _key_);
28else
29 (entry)->key = (_key_);
30 } while(0)
31
32#define dictCompareKeys(d, key1, key2)
33 (((d)->type->keyCompare) ?
34 (d)->type->keyCompare((d)->privdata, key1, key2) :
35 (key1) == (key2))
rehashidx,是与ht[2]配合实现渐进式rehash操作的。若使用一步到位的方式,当key的数量非常大的时候,rehashing期间,是会卡死所有操作的。
iterators,是用于记录当前使用的安全迭代器数量,与rehashing操作有关。
整体结构如下:
1/*2+---------+ /+-----------+ +-->+----------+ +---+
3|dictType*| / |dictEntry**|---+ |dictEntry*|->|K|V|->NULL
4+---------+ / +-----------+ +----------+ +---+
5|privdata | / |size | |dictEntry*|->NULL
6+---------+/ +-----------+ +----------+
7|ht[2] | |sizemask | |dictEntry*|->NULL
8+---------+ +-----------+ +----------+
9|rehashidx| |used | |dictEntry*|->NULL
10+---------+ +-----------+ +----------+
11|iterators|
12+---------+ +-----------+
13 |dictEntry**|-->NULL
14 +-----------+
15 |size |
16 +-----------+
17 |sizemask |
18 +-----------+
19 |used |
20 +-----------+
21*/
二、创建
1staticvoid _dictReset(dictht *ht) 2{ 3 ht->table = NULL; 4 ht->size = 0; 5 ht->sizemask = 0; 6 ht->used = 0; 7} 89int _dictInit(dict *d, dictType *type,
10void *privDataPtr)
11{
12 _dictReset(&d->ht[0]);
13 _dictReset(&d->ht[1]);
14 d->type = type;
15 d->privdata = privDataPtr;
16 d->rehashidx = -1;
17 d->iterators = 0;
18return DICT_OK;
19}
20
21 dict *dictCreate(dictType *type,
22void *privDataPtr)
23{
24 dict *d = zmalloc(sizeof(*d));
25
26 _dictInit(d,type,privDataPtr);
27return d;
28 }
可以调用dictCreate创建一个空的dict,它会分配好dict的空间,并初始化所有成员变量。在这里把privdata传入并保存。搜了一下整个redis源码的dictCreate调用,看到传入的值全为NULL。目前的理解暂时不清楚这个变量是什么时候赋值的。初始化后的dict结构如下:
1/*2+------------+ /+-----------+
3|dictType* | / |dictEntry**|-->NULL
4+------------+ / +-----------+
5|privdata | / |size=0 |
6+------------+/ +-----------+
7|ht[2] | |sizemask=0 |
8+------------+ +-----------+
9|rehashidx=-1| |used=0 |
10+------------+ +-----------+
11|iterators=0 |
12+------------+ +-----------+
13 |dictEntry**|-->NULL
14 +-----------+
15 |size=0 |
16 +-----------+
17 |sizemask=0 |
18 +-----------+
19 |used=0 |
20 +-----------+
21*/
刚创建好的dict是存不了任何数据的,其两个hash table的size都为0。这里先说明一下resize操作:
1#define DICT_HT_INITIAL_SIZE 42
3static unsigned long _dictNextPower(unsigned long size)
4{
5 unsigned long i = DICT_HT_INITIAL_SIZE;
6
7if (size >= LONG_MAX) return LONG_MAX + 1LU;
8while(1) {
9if (i >= size)
10return i;
11 i *= 2;
12 }
13}
14
15/* Expand or create the hash table */
16int dictExpand(dict *d, unsigned long size)
17{
18/* the size is invalid if it is smaller than the number of
19 * elements already inside the hash table */
20if (dictIsRehashing(d) || d->ht[0].used > size)
21return DICT_ERR;
22
23 dictht n; /* the new hash table */
24 unsigned long realsize = _dictNextPower(size);
25
26/* Rehashing to the same table size is not useful. */
27if (realsize == d->ht[0].size) return DICT_ERR;
28
29/* Allocate the new hash table and initialize all pointers to NULL */
30 n.size = realsize;
31 n.sizemask = realsize-1;
32 n.table = zcalloc(realsize*sizeof(dictEntry*));
33 n.used = 0;
34
35/* Is this the first initialization? If so it"s not really a rehashing
36 * we just set the first hash table so that it can accept keys. */
37if (d->ht[0].table == NULL) {
38 d->ht[0] = n;
39return DICT_OK;
40 }
41
42/* Prepare a second hash table for incremental rehashing */
43 d->ht[1] = n;
44 d->rehashidx = 0;
45return DICT_OK;
46}
47
48int dictResize(dict *d)
49{
50int minimal;
51
52if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
53 minimal = d->ht[0].used;
54if (minimal < DICT_HT_INITIAL_SIZE)
55 minimal = DICT_HT_INITIAL_SIZE;
56return dictExpand(d, minimal);
57 }
_dictNextPower用于获取当前要分配给hash table的size,得到的值一定是2的倍数,初始值为4。
dictExpand,从源码注释上看,它是为了扩容hash table,或者创建一个。它不允许与rehashing操作同时进行,也不能强制缩容。在使用_dictNextPower得到需要的size之后,它先是使用一个临时变量n去分配空间,然后进行判断,若ht[0].table的值为NULL,则认为是刚create出来的dict,直接把n赋值给ht[0],否则给ht[1],并开始rehashing操作。
dictResize操作就不用多说了。
三、rehashing操作
若有这样一个dict,假设K1、K2、K3、K4计算出来的hash值分别为0、5、2、7,使用sizemask计算出来的idx分别为0、1、2、3
1/*2 +----+
3 +->|K1|V|->NULL
4+------------+ /+-----------+ +->+----------+ / +----+
5|dictType* | / |dictEntry**|--+ |dictEntry*|/ +----+
6+------------+ / +-----------+ +----------+ +-->|K2|V|->NULL
7|privdata | / |size=4 | |dictEntry*|/ +----+
8+------------+/ +-----------+ +----------+
9|ht[2] | |sizemask=3 | |dictEntry*| +----+
10+------------+ +-----------+ +----------+ +-->|K3|V|->NULL
11|rehashidx=-1| |used=4 | |dictEntry*| +----+
12+------------+ +-----------+ +----------+ +----+
13|iterators=0 | +->|K4|V|->NULL
14+------------+ +-----------+ +----+
15 |dictEntry**|-->NULL
16 +-----------+
17 |size=0 |
18 +-----------+
19 |sizemask=0 |
20 +-----------+
21 |used=0 |
22 +-----------+
23*/
1staticint _dictExpandIfNeeded(dict *d) 2{ 3/* Incremental rehashing already in progress. Return. */4if (dictIsRehashing(d)) return DICT_OK;
5
6/* If the hash table is empty expand it to the initial size. */
7if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
8
9/* If we reached the 1:1 ratio, and we are allowed to resize the hash
10 * table (global setting) or we should avoid it but the ratio between
11 * elements/buckets is over the "safe" threshold, we resize doubling
12 * the number of buckets. */
13if (d->ht[0].used >= d->ht[0].size &&
14 (dict_can_resize ||
15 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
16 {
17return dictExpand(d, d->ht[0].used*2);
18 }
19return DICT_OK;
20 }
通过函数_dictExpandIfNeeded,可知当used >= size且dict_can_resize == TRUE的时候,需要调用dictExpand进入rehashing状态。dict_can_resize默认为1
1staticint dict_can_resize = 1;2static unsigned int dict_force_resize_ratio = 5;
需要的size为当前used * 2,即为8。调用dictExpand之后的结构:
1/*2 +----+
3 +->|K1|V|->NULL
4 +->+----------+ / +----+
5 | |dictEntry*|/ +----+
6 | +----------+ +-->|K2|V|->NULL
7 | |dictEntry*|/ +----+
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
10 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
11 |privdata | / |size=4 | |dictEntry*| +----+
12 +------------+/ +-----------+ +----------+ +----+
13 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
14 +------------+ +-----------+ +----+
15 |rehashidx=0 | |used=4 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+
19 |dictEntry**|--+ |dictEntry*|->NULL
20 +-----------+ +----------+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+
23 |sizemask=7 | |dictEntry*|->NULL
24 +-----------+ +----------+
25 |used=0 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+
29 |dictEntry*|->NULL
30 +----------+
31 |dictEntry*|->NULL
32 +----------+
33 |dictEntry*|->NULL
34 +----------+
35*/
根据rehashing操作
1int dictRehash(dict *d, int n) { 2int empty_visits = n*10; /* Max number of empty buckets to visit. */3if (!dictIsRehashing(d)) return0;
4
5while(n-- && d->ht[0].used != 0) {
6 dictEntry *de, *nextde;
7
8/* Note that rehashidx can"t overflow as we are sure there are more
9 * elements because ht[0].used != 0 */
10 assert(d->ht[0].size > (unsigned long)d->rehashidx);
11while(d->ht[0].table[d->rehashidx] == NULL) {
12 d->rehashidx++;
13if (--empty_visits == 0) return1;
14 }
15 de = d->ht[0].table[d->rehashidx];
16/* Move all the keys in this bucket from the old to the new hash HT */
17while(de) {
18 uint64_t h;
19
20 nextde = de->next;
21/* Get the index in the new hash table */
22 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
23 de->next = d->ht[1].table[h];
24 d->ht[1].table[h] = de;
25 d->ht[0].used--;
26 d->ht[1].used++;
27 de = nextde;
28 }
29 d->ht[0].table[d->rehashidx] = NULL;
30 d->rehashidx++;
31 }
32
33/* Check if we already rehashed the whole table... */
34if (d->ht[0].used == 0) {
35 zfree(d->ht[0].table);
36 d->ht[0] = d->ht[1];
37 _dictReset(&d->ht[1]);
38 d->rehashidx = -1;
39return0;
40 }
41
42/* More to rehash... */
43return1;
44 }
rehashing操作将会把ht[0]里,rehashidx的值对应的bucket下的所有dictEntry,移至ht[1],之后对rehashidx进行自增处理。当ht[0]->used为0时,认为ht[0]的所有dictEntry已经移至ht[1],此时return 0,否则 return 1,告诉调用者,还需要继续进行rehashing操作。同时,rehashing时允许最多跳过10n的空bucket,就要退出流程。假设传入的n=1,即只进行一次rehashing操作,转换至完成之后的结构:
1/*2
3 +->NULL
4 +->+----------+ /
5 | |dictEntry*|/ +----+
6 | +----------+ +-->|K2|V|->NULL
7 | |dictEntry*|/ +----+
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
10 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
11 |privdata | / |size=4 | |dictEntry*| +----+
12 +------------+/ +-----------+ +----------+ +----+
13 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
14 +------------+ +-----------+ +----+
15 |rehashidx=1 | |used=3 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+ +----+
19 |dictEntry**|--+ |dictEntry*|-->|K1|V|->NULL
20 +-----------+ +----------+ +----+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+
23 |sizemask=7 | |dictEntry*|->NULL
24 +-----------+ +----------+
25 |used=1 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+
29 |dictEntry*|->NULL
30 +----------+
31 |dictEntry*|->NULL
32 +----------+
33 |dictEntry*|->NULL
34 +----------+
35*/
所有节点移完时:
1/*2
3
4 +->+----------+
5 | |dictEntry*|->NULL
6 | +----------+
7 | |dictEntry*|->NULL
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*|->NULL
10 +------------+ / +-----------+ +----------+
11 |privdata | / |size=4 | |dictEntry*|->NULL
12 +------------+/ +-----------+ +----------+
13 |ht[2] | |sizemask=3 |
14 +------------+ +-----------+
15 |rehashidx=4 | |used=0 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+ +----+
19 |dictEntry**|--+ |dictEntry*|-->|K1|V|->NULL
20 +-----------+ +----------+ +----+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+ +----+
23 |sizemask=7 | |dictEntry*|-->|K3|V|->NULL
24 +-----------+ +----------+ +----+
25 |used=4 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+ +----+
29 |dictEntry*|-->|K2|V|->NULL
30 +----------+ +----+
31 |dictEntry*|->NULL
32 +----------+ +----+
33 |dictEntry*|-->|K4|V|->NULL
34 +----------+ +----+
35*/
此时ht[0]->used为0,释放原ht[0]的hash table,把ht[1]赋值给ht[0],并设置ht[1] = NULL,最后重置rehashidx=-1,rehashing操作结束
1/*2 +------------+ /+-----------+ +-->+----------+ +----+
3 |dictType* | / |dictEntry**|---+ |dictEntry*|-->|K1|V|->NULL
4 +------------+ / +-----------+ +----------+ +----+
5 |privdata | / |size=8 | |dictEntry*|->NULL
6 +------------+/ +-----------+ +----------+ +----+
7 |ht[2] | |sizemask=7 | |dictEntry*|-->|K3|V|->NULL
8 +------------+ +-----------+ +----------+ +----+
9 |rehashidx=-1| |used=4 | |dictEntry*|->NULL
10 +------------+ +-----------+ +----------+
11 |iterators=0 | |dictEntry*|->NULL
12 +------------+ +-----------+ +----------+ +----+
13 |dictEntry**|->NULL |dictEntry*|-->|K2|V|->NULL
14 +-----------+ +----------+ +----+
15 |size=0 | |dictEntry*|->NULL
16 +-----------+ +----------+ +----+
17 |sizemask=0 | |dictEntry*|-->|K4|V|->NULL
18 +-----------+ +----------+ +----+
19 |used=0 |
20 +-----------+
21*/
rehashing操作的触发共有两种方式
1、定时操作
1longlong timeInMilliseconds(void) { 2struct timeval tv; 34 gettimeofday(&tv,NULL);
5return (((longlong)tv.tv_sec)*1000)+(tv.tv_usec/1000);
6}
7
8/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
9int dictRehashMilliseconds(dict *d, int ms) {
10longlong start = timeInMilliseconds();
11int rehashes = 0;
12
13while(dictRehash(d,100)) {
14 rehashes += 100;
15if (timeInMilliseconds()-start > ms) break;
16 }
17return rehashes;
18 }
外部传入一个毫秒时间,在这时间内循环执行rehashing,每次执行100次。
2、操作时触发
1staticvoid _dictRehashStep(dict *d) {2if (d->iterators == 0) dictRehash(d,1);3 }
在插入、删除、查找等操作时,顺带执行一次rehashing操作。值得注意的是,如果存在安全的迭代器,即d->iterators != 0,则不会进行rehashing操作
三、插入
获取可插入新节点的bucket idx的方法:
1staticlong _dictKeyIndex(dict *d, constvoid *key, uint64_t hash, dictEntry **existing) 2{ 3 unsigned long idx, table; 4 dictEntry *he; 5if (existing) *existing = NULL; 67/* Expand the hash table if needed */
8if (_dictExpandIfNeeded(d) == DICT_ERR)
9return -1;
10for (table = 0; table <= 1; table++) {
11 idx = hash & d->ht[table].sizemask;
12/* Search if this slot does not already contain the given key */
13 he = d->ht[table].table[idx];
14while(he) {
15if (key==he->key || dictCompareKeys(d, key, he->key)) {
16if (existing) *existing = he;
17return -1;
18 }
19 he = he->next;
20 }
21if (!dictIsRehashing(d)) break;
22 }
23return idx;
24 }
此方法在进行查找idx之前,先进行一次判断,是否需要rehashing操作。而后进行查找。idx的值就是通过hash函数计算出来的hash_value与sizemask做位运算的结果,然后遍历此idx对应的bucket,若已存在相同的key,则认为不可插入,并把对应的dictEntry用传入的二级指针的方式传出,供调用者使用。若不存在,则需要判断是否正在进行rehashing操作。若在,则会对ht[1]做一次相同的操作。最终可以得到一个idx值,或传出一个dictEntry。
由于rehashing期间,将会把ht[0]的所有dictEntry依次转移至ht[1],为了防止新插入的dictEntry落到ht[0]已完成rehashing操作的bucket上,在rehashing期间,返回的可插入的idx一定是属于ht[1]的。
插入方法:
1 dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing) 2{ 3long index; 4 dictEntry *entry; 5 dictht *ht; 67if (dictIsRehashing(d)) _dictRehashStep(d);
8
9/* Get the index of the new element, or -1 if
10 * the element already exists. */
11if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
12return NULL;
13
14/* Allocate the memory and store the new entry.
15 * Insert the element in top, with the assumption that in a database
16 * system it is more likely that recently added entries are accessed
17 * more frequently. */
18 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
19 entry = zmalloc(sizeof(*entry));
20 entry->next = ht->table[index];
21 ht->table[index] = entry;
22 ht->used++;
23
24/* Set the hash entry fields. */
25 dictSetKey(d, entry, key);
26return entry;
27 }
若不存在相同key,则插入,否则,传出dictEntry的指针。插入时,由于没有记录每个dictEntry链表的尾指针,所以使用头插法,可以节约插入时的时间消耗。
dictAddRaw做为最终插入的方法,被多个方法所调用:
1//若不存在,则插入,否则报错2int dictAdd(dict *d, void *key, void *val)
3{
4 dictEntry *entry = dictAddRaw(d,key,NULL);
5
6if (!entry) return DICT_ERR;
7 dictSetVal(d, entry, val);
8return DICT_OK;
9}
10
11//若存在,则替换value,否则插入
12int dictReplace(dict *d, void *key, void *val)
13{
14 dictEntry *entry, *existing, auxentry;
15 entry = dictAddRaw(d,key,&existing);
16if (entry) {
17 dictSetVal(d, entry, val);
18return1;
19 }
20 auxentry = *existing;
21 dictSetVal(d, existing, val);
22 dictFreeVal(d, &auxentry);
23return0;
24}
25
26//若存在,则返回对应dictEntry,否则插入后返回新的dictEntry
27 dictEntry *dictAddOrFind(dict *d, void *key) {
28 dictEntry *entry, *existing;
29 entry = dictAddRaw(d,key,&existing);
30return entry ? entry : existing;
31 }
对于一个刚刚create的dict:
1/*2
3+------------+ /+-----------+
4|dictType* | / |dictEntry**|-->NULL
5+------------+ / +-----------+
6|privdata | / |size=0 |
7+------------+/ +-----------+
8|ht[2] | |sizemask=0 |
9+------------+ +-----------+
10|rehashidx=-1| |used=0 |
11+------------+ +-----------+
12|iterators=0 |
13+------------+ +-----------+
14 |dictEntry**|-->NULL
15 +-----------+
16 |size=0 |
17 +-----------+
18 |sizemask=0 |
19 +-----------+
20 |used=0 |
21 +-----------+
22*/
假设K1、K2、K3、K4计算出来的hash值分别为0、5、2、7,使用sizemask计算出来的idx分别为0、1、2、3
现调用dictAdd方法进行插入
1、插入K1
执行完dictAddRaw中的_dictKeyIndex里的_dictExpandIfNeeded:
1/*2
3 +-->NULL
4+------------+ /+-----------+ +->+----------+ /
5|dictType* | / |dictEntry**|--+ |dictEntry*|/
6+------------+ / +-----------+ +----------+ +--->NULL
7|privdata | / |size=4 | |dictEntry*|/
8+------------+/ +-----------+ +----------+
9|ht[2] | |sizemask=3 | |dictEntry*|
10+------------+ +-----------+ +----------+ +--->NULL
11|rehashidx=-1| |used=0 | |dictEntry*|
12+------------+ +-----------+ +----------+
13|iterators=0 | +-->NULL
14+------------+ +-----------+
15 |dictEntry**|-->NULL
16 +-----------+
17 |size=0 |
18 +-----------+
19 |sizemask=0 |
20 +-----------+
21 |used=0 |
22 +-----------+
23*/
同时得到其在ht[0]的idx = 0,且不在rehashing操作中,于是直接插入
1/*2 +----+
3 +->|K1|V|->NULL
4+------------+ /+-----------+ +->+----------+ / +----+
5|dictType* | / |dictEntry**|--+ |dictEntry*|/
6+------------+ / +-----------+ +----------+ +--->NULL
7|privdata | / |size=4 | |dictEntry*|/
8+------------+/ +-----------+ +----------+
9|ht[2] | |sizemask=3 | |dictEntry*|
10+------------+ +-----------+ +----------+ +--->NULL
11|rehashidx=-1| |used=1 | |dictEntry*|
12+------------+ +-----------+ +----------+
13|iterators=0 | +-->NULL
14+------------+ +-----------+
15 |dictEntry**|-->NULL
16 +-----------+
17 |size=0 |
18 +-----------+
19 |sizemask=0 |
20 +-----------+
21 |used=0 |
22 +-----------+
23*/
2、插入K2、K3、K4后:
1/*2 +----+
3 +->|K1|V|->NULL
4+------------+ /+-----------+ +->+----------+ / +----+
5|dictType* | / |dictEntry**|--+ |dictEntry*|/ +-----
6+------------+ / +-----------+ +----------+ +-->|K2|V|->NULL
7|privdata | / |size=4 | |dictEntry*|/ +----+
8+------------+/ +-----------+ +----------+
9|ht[2] | |sizemask=3 | |dictEntry*| +----+
10+------------+ +-----------+ +----------+ +-->|K3|V|->NULL
11|rehashidx=-1| |used=4 | |dictEntry*| +----+
12+------------+ +-----------+ +----------+ +----+
13|iterators=0 | +->|K4|V|->NULL
14+------------+ +-----------+ +----+
15 |dictEntry**|-->NULL
16 +-----------+
17 |size=0 |
18 +-----------+
19 |sizemask=0 |
20 +-----------+
21 |used=0 |
22 +-----------+
23*/
3、此时若有一个K5,计算出来的hash值为8,则:
i.因此刻不在rehashing操作,所以不用做处理
ii.执行完dictAddRaw中的_dictKeyIndex里的_dictExpandIfNeeded:
1/*2 +----+
3 +->|K1|V|->NULL
4 +->+----------+ / +----+
5 | |dictEntry*|/ +----+
6 | +----------+ +-->|K2|V|->NULL
7 | |dictEntry*|/ +----+
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
10 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
11 |privdata | / |size=4 | |dictEntry*| +----+
12 +------------+/ +-----------+ +----------+ +----+
13 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
14 +------------+ +-----------+ +----+
15 |rehashidx=0 | |used=4 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+
19 |dictEntry**|--+ |dictEntry*|->NULL
20 +-----------+ +----------+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+
23 |sizemask=7 | |dictEntry*|->NULL
24 +-----------+ +----------+
25 |used=0 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+
29 |dictEntry*|->NULL
30 +----------+
31 |dictEntry*|->NULL
32 +----------+
33 |dictEntry*|->NULL
34 +----------+
35*/
同时得到其在ht[1]的idx=0
iii.插入
1/*2 +----+
3 +->|K1|V|->NULL
4 +->+----------+ / +----+
5 | |dictEntry*|/ +----+
6 | +----------+ +-->|K2|V|->NULL
7 | |dictEntry*|/ +----+
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
10 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
11 |privdata | / |size=4 | |dictEntry*| +----+
12 +------------+/ +-----------+ +----------+ +----+
13 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
14 +------------+ +-----------+ +----+
15 |rehashidx=0 | |used=4 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+ +----+
19 |dictEntry**|--+ |dictEntry*|-->|K5|V|->NULL
20 +-----------+ +----------+ +----+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+
23 |sizemask=7 | |dictEntry*|->NULL
24 +-----------+ +----------+
25 |used=1 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+
29 |dictEntry*|->NULL
30 +----------+
31 |dictEntry*|->NULL
32 +----------+
33 |dictEntry*|->NULL
34 +----------+
35*/
4、此时若有一个K6,计算出来的hash值为16,则:
i.此时已处理rehashing操作,执行一步:
1/*2
3 +-->NULL
4 +->+----------+ /
5 | |dictEntry*|/ +----+
6 | +----------+ +-->|K2|V|->NULL
7 | |dictEntry*|/ +----+
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
10 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
11 |privdata | / |size=4 | |dictEntry*| +----+
12 +------------+/ +-----------+ +----------+ +----+
13 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
14 +------------+ +-----------+ +----+
15 |rehashidx=1 | |used=3 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+ +----+ +----+
19 |dictEntry**|--+ |dictEntry*|-->|K1|V|->|K5|V|->NULL
20 +-----------+ +----------+ +----+ +----+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+
23 |sizemask=7 | |dictEntry*|->NULL
24 +-----------+ +----------+
25 |used=2 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+
29 |dictEntry*|->NULL
30 +----------+
31 |dictEntry*|->NULL
32 +----------+
33 |dictEntry*|->NULL
34 +----------+
35*/
ii.执行完dictAddRaw中的_dictKeyIndex里的_dictExpandIfNeeded,因已在进行rehashing,所以不做任何处理,只返回其在ht[1]的idx 0
iii.头插法将K6插入
1/*2
3 +-->NULL
4 +->+----------+ /
5 | |dictEntry*|/ +----+
6 | +----------+ +-->|K2|V|->NULL
7 | |dictEntry*|/ +----+
8 +------------+ /+-----------+ | +----------+
9 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
10 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
11 |privdata | / |size=4 | |dictEntry*| +----+
12 +------------+/ +-----------+ +----------+ +----+
13 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
14 +------------+ +-----------+ +----+
15 |rehashidx=1 | |used=3 |
16 +------------+ +-----------+
17 |iterators=0 |
18 +------------+ +-----------+ +->+----------+ +----+ +----+ +----+
19 |dictEntry**|--+ |dictEntry*|-->|K6|V|->|K1|V|->|K5|V|->NULL
20 +-----------+ +----------+ +----+ +----+ +----+
21 |size=8 | |dictEntry*|->NULL
22 +-----------+ +----------+
23 |sizemask=7 | |dictEntry*|->NULL
24 +-----------+ +----------+
25 |used=3 | |dictEntry*|->NULL
26 +-----------+ +----------+
27 |dictEntry*|->NULL
28 +----------+
29 |dictEntry*|->NULL
30 +----------+
31 |dictEntry*|->NULL
32 +----------+
33 |dictEntry*|->NULL
34 +----------+
35*/
以上为正常插入时的情况,key已存在,或是调用另外两个方法的情况与之大同小异,不再做过多叙述。
四、查找
1 dictEntry *dictFind(dict *d, constvoid *key) 2{ 3 dictEntry *he; 4 uint64_t h, idx, table; 56if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
7if (dictIsRehashing(d)) _dictRehashStep(d);
8 h = dictHashKey(d, key);
9for (table = 0; table <= 1; table++) {
10 idx = h & d->ht[table].sizemask;
11 he = d->ht[table].table[idx];
12while(he) {
13if (key==he->key || dictCompareKeys(d, key, he->key))
14return he;
15 he = he->next;
16 }
17if (!dictIsRehashing(d)) return NULL;
18 }
19return NULL;
20 }
同样,若在rehashing期间,则执行一次。首先在ht[0]里查找,计算出hash值对应ht[0]的idx,取得其bucket,然后遍历之,找到与指定key相同的dictEntry。若ht[0]中找不到指定的key,且正在进行rehashing操作,则去ht[1]以相同方式也查找一次。
redis额外提供一个,根据key只获取其value的方法:
1void *dictFetchValue(dict *d, constvoid *key) {2 dictEntry *he;34 he = dictFind(d,key);
5return he ? dictGetVal(he) : NULL;
6 }
key不存在时返回NULL
五、删除
删除方法:
1static dictEntry *dictGenericDelete(dict *d, constvoid *key, int nofree) { 2 uint64_t h, idx; 3 dictEntry *he, *prevHe; 4int table; 56if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;
7
8if (dictIsRehashing(d)) _dictRehashStep(d);
9 h = dictHashKey(d, key);
10
11for (table = 0; table <= 1; table++) {
12 idx = h & d->ht[table].sizemask;
13 he = d->ht[table].table[idx];
14 prevHe = NULL;
15while(he) {
16if (key==he->key || dictCompareKeys(d, key, he->key)) {
17/* Unlink the element from the list */
18if (prevHe)
19 prevHe->next = he->next;
20else
21 d->ht[table].table[idx] = he->next;
22if (!nofree) {
23 dictFreeKey(d, he);
24 dictFreeVal(d, he);
25 zfree(he);
26 }
27 d->ht[table].used--;
28return he;
29 }
30 prevHe = he;
31 he = he->next;
32 }
33if (!dictIsRehashing(d)) break;
34 }
35return NULL; /* not found */
36 }
查找方式与dictFind相同。找到之后,由调用者指定是否要销毁此dictEntry,若不销毁,则要把对应指针传出来,给外部使用。
此方法被两个接口所调用:
1int dictDelete(dict *ht, constvoid *key) {2return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;3}45 dictEntry *dictUnlink(dict *ht, constvoid *key) {
6return dictGenericDelete(ht,key,1);
7 }
dictDelete就不用多说了,直接删除对应dictEntry。关于为什么需要dictUnlink,源码的注释上写道,如果有某种操作,需要先查找指定key对应的dictEntry,然后对其做点操作,接着就直接删除,在没有dictUnlink的时候,需要这样:
1 entry = dictFind(...);2// Do something with entry3 dictDelete(dictionary,entry);
实际需要查找两次。而在有dictUnlink的情况下:
1 entry = dictUnlink(dictionary,entry);2// Do something with entry3 dictFreeUnlinkedEntry(entry);
只需要一次查找,配合专门的删除操作,即可。
1void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {2if (he == NULL) return;3 dictFreeKey(d, he);4 dictFreeVal(d, he);5 zfree(he);6 }
六、销毁
清空一个hash table的方法
1int _dictClear(dict *d, dictht *ht, void(callback)(void *)) { 2 unsigned long i; 34/* Free all the elements */
5for (i = 0; i < ht->size && ht->used > 0; i++) {
6 dictEntry *he, *nextHe;
7
8if (callback && (i & 65535) == 0) callback(d->privdata);
9
10if ((he = ht->table[i]) == NULL) continue;
11while(he) {
12 nextHe = he->next;
13 dictFreeKey(d, he);
14 dictFreeVal(d, he);
15 zfree(he);
16 ht->used--;
17 he = nextHe;
18 }
19 }
20/* Free the table and the allocated cache structure */
21 zfree(ht->table);
22/* Re-initialize the table */
23 _dictReset(ht);
24return DICT_OK; /* never fails */
25 }
两层循环,分别遍历所有bucket与单bucket里所有dictEntry进行释放。关于这里的 (i&65535) == 0的判断,_dictClear方法仅在相同文件的方法dictEmpty与dictRelease调用
1void dictRelease(dict *d) 2{ 3 _dictClear(d,&d->ht[0],NULL); 4 _dictClear(d,&d->ht[1],NULL); 5 zfree(d); 6} 78void dictEmpty(dict *d, void(callback)(void*)) {
9 _dictClear(d,&d->ht[0],callback);
10 _dictClear(d,&d->ht[1],callback);
11 d->rehashidx = -1;
12 d->iterators = 0;
13 }
dictRelease不用多说,传入的callback为NULL。而dictEmpty,搜索redis源码所有文件的调用,
ccx@ccx:~/Desktop/redis-5.0.7/redis-5.0.7/src$ grep dictEmpty * -rblocked.c: dictEmpty(c
->bpop.keys,NULL);db.c: dictEmpty(server.db[j].dict,callback);
db.c: dictEmpty(server.db[j].expires,callback);
dict.c:void dictEmpty(dict
*d, void(callback)(void*)) {dict.h:void dictEmpty(dict
*d, void(callback)(void*));replication.c: dictEmpty(server.repl_scriptcache_dict,NULL);
sentinel.c: dictEmpty(server.commands,NULL);
仅db.c里传了callback进来,对应的方法为
1longlong emptyDb(int dbnum, int flags, void(callback)(void*));
继续搜索:
ccx@ccx:~/Desktop/redis-5.0.7/redis-5.0.7/src$ grep emptyDb * -rcluster.c: emptyDb(
-1,EMPTYDB_NO_FLAGS,NULL);db.c:
longlong emptyDb(int dbnum, int flags, void(callback)(void*)) {db.c: emptyDbAsync(
&server.db[j]);db.c:
/* Return the set of flags to use for the emptyDb() call for FLUSHALL*/db.c: server.dirty
+= emptyDb(c->db->id,flags,NULL);db.c: server.dirty
+= emptyDb(-1,flags,NULL);debug.c: emptyDb(
-1,EMPTYDB_NO_FLAGS,NULL);debug.c: emptyDb(
-1,EMPTYDB_NO_FLAGS,NULL);lazyfree.c:void emptyDbAsync(redisDb
*db) {replication.c:
* data with emptyDb(), and while we load the new data received as anreplication.c:
/* Callback used by emptyDb() while flushing away old data to load*/replication.c: emptyDb(
server.h:
longlong emptyDb(int dbnum, int flags, void(callback)(void*));server.h:void emptyDbAsync(redisDb
*db);
真正调用的地方传入的也是NULL,并不知道是拿来做什么用的...
ps:用grep查找只是方便cv过来....
七、迭代器操作
数据结构:
1 typedef struct dictIterator {2 dict *d;3long index;4int table, safe;5 dictEntry *entry, *nextEntry;6/* unsafe iterator fingerprint for misuse detection. */7longlong fingerprint;
8 } dictIterator;
根据源码注释可知,如果是个安全的迭代器,即safe == 1,则在迭代中可以调用dictAdd、dictFind等方法,否则只能调用dictNext。
index表示,ht[table]对应的bucket的idx。
获取迭代器:
1 dictIterator *dictGetIterator(dict *d) 2{ 3 dictIterator *iter = zmalloc(sizeof(*iter)); 45 iter->d = d;
6 iter->table = 0;
7 iter->index = -1;
8 iter->safe = 0;
9 iter->entry = NULL;
10 iter->nextEntry = NULL;
11return iter;
12}
13
14 dictIterator *dictGetSafeIterator(dict *d) {
15 dictIterator *i = dictGetIterator(d);
16
17 i->safe = 1;
18return i;
19 }
刚获取的迭代器并不指向具体哪个dictEntry
next操作:
1 dictEntry *dictNext(dictIterator *iter) 2{ 3while (1) { 4if (iter->entry == NULL) { 5 dictht *ht = &iter->d->ht[iter->table]; 6if (iter->index == -1 && iter->table == 0) { 7if (iter->safe) 8 iter->d->iterators++; 9else10 iter->fingerprint = dictFingerprint(iter->d);
11 }
12 iter->index++;
13if (iter->index >= (long) ht->size) {
14if (dictIsRehashing(iter->d) && iter->table == 0) {
15 iter->table++;
16 iter->index = 0;
17 ht = &iter->d->ht[1];
18 } else {
19break;
20 }
21 }
22 iter->entry = ht->table[iter->index];
23 } else {
24 iter->entry = iter->nextEntry;
25 }
26if (iter->entry) {
27/* We need to save the "next" here, the iterator user
28 * may delete the entry we are returning. */
29 iter->nextEntry = iter->entry->next;
30return iter->entry;
31 }
32 }
33return NULL;
34 }
对于一个新的迭代器,首次调用时,会根据是否安全,做不同操作。安全的迭代器会给dict里的计数器+1,不安全的将会记录本字典的指纹。之后会遍历ht[0],取到第一个非NULL的dictEntry。当ht[0]遍历完且取不到非NULL的dictEntry时,如果正在进行rehashing操作,则会去ht[1]里找。
如:
1/*2
3 +-------------------------+
4+----|dict * |
5| +-------------------------+
6| |long index |
7| +-------------------------+
8| |int table |
9| +-------------------------+
10| |int safe |
11| +-------------------------+
12| |dictEntry *entry |->NULL
13| +-------------------------+
14| |dictEntry *entrynextEntry|->NULL
15| +-------------------------+
16| |long long fingerprint |
17| +-------------------------+
18|
19|
20|
21| +-->NULL
22| +->+----------+ /
23| | |dictEntry*|/ +----+
24| | +----------+ +-->|K2|V|->NULL
25| | |dictEntry*|/ +----+
26+--->+------------+ /+-----------+ | +----------+
27 |dictType* | / |dictEntry**|--+ |dictEntry*| +----+
28 +------------+ / +-----------+ +----------+ +-->|K3|V|->NULL
29 |privdata | / |size=4 | |dictEntry*| +----+
30 +------------+/ +-----------+ +----------+ +----+
31 |ht[2] | |sizemask=3 | +->|K4|V|->NULL
32 +------------+ +-----------+ +----+
33 |rehashidx=1 | |used=3 |
34 +------------+ +-----------+
35 |iterators=0 |
36 +------------+ +-----------+ +->+----------+ +----+ +----+
37 |dictEntry**|--+ |dictEntry*|-->|K1|V|->|K5|V|->NULL
38 +-----------+ +----------+ +----+ +----+
39 |size=8 | |dictEntry*|->NULL
40 +-----------+ +----------+
41 |sizemask=7 | |dictEntry*|->NULL
42 +-----------+ +----------+
43 |used=3 | |dictEntry*|->NULL
44 +-----------+ +----------+
45 |dictEntry*|->NULL
46 +----------+
47 |dictEntry*|->NULL
48 +----------+
49 |dictEntry*|->NULL
50 +----------+
51 |dictEntry*|->NULL
52 +----------+
53*/
遍历顺序为,K2,K3,K4,K1,K5。
迭代器销毁:
1void dictReleaseIterator(dictIterator *iter) 2{ 3if (!(iter->index == -1 && iter->table == 0)) { 4if (iter->safe) 5 iter->d->iterators--; 6else7 assert(iter->fingerprint == dictFingerprint(iter->d));
8 }
9 zfree(iter);
10 }
与首次执行next操作相对应,若为safe的迭代器,要给dict的计算减1,否则要校验期间dict的指纹是否发生了变化 。
指纹的计算:
1longlong dictFingerprint(dict *d) { 2longlong integers[6], hash = 0; 3int j; 45 integers[0] = (long) d->ht[0].table;
6 integers[1] = d->ht[0].size;
7 integers[2] = d->ht[0].used;
8 integers[3] = (long) d->ht[1].table;
9 integers[4] = d->ht[1].size;
10 integers[5] = d->ht[1].used;
11
12/* We hash N integers by summing every successive integer with the integer
13 * hashing of the previous sum. Basically:
14 *
15 * Result = hash(hash(hash(int1)+int2)+int3) ...
16 *
17 * This way the same set of integers in a different order will (likely) hash
18 * to a different number. */
19for (j = 0; j < 6; j++) {
20 hash += integers[j];
21/* For the hashing step we use Tomas Wang"s 64 bit integer hash. */
22 hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
23 hash = hash ^ (hash >> 24);
24 hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
25 hash = hash ^ (hash >> 14);
26 hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
27 hash = hash ^ (hash >> 28);
28 hash = hash + (hash << 31);
29 }
30return hash;
31 }
对于不安全的迭代器,在迭代过程中,不允许操作任何修改dict的操作,是只读的,不会发生迭代器失效的问题。对于安全的迭代器,在进行操作本节点的时候,redis中记录了当前迭代的bucket idx,以及当前dictEntry的next节点。如果只是add操作,即使是用了头插法把新dictEntry插在本节点之前,对迭代器本身并没有影响。如果是delete了本节点,迭代器中还记录了next节点的位置,调用next时直接取就好。如果next为空,则可以认为当前bucket遍历完了,取下一个bucket就行了。当然,如果在add/delete等操作的时候,进行了rehashing操作,那么当前迭代器里记录的next,在rehashing之后,可能就不是当前节点新位置的next了。所以在使用安全迭代器的时候,禁止了rehashing操作。
八、其它操作
dict还支持其它的一些操作。
1、随机获取一个key,可以用于一些随机操作的dictGetRandomKey
2、随机获取n个key:dictGetSomeKeys
3、scan操作
关于scan操作,redis采用了一个很巧妙的方法,保证了在开始scan时未删除的元素一定能遍历到,又能保证尽量少地重复遍历。
这里直接给个传送门,这里讲得很好:
https://blog.csdn.net/gqtcgq/article/details/50533336
redis 5.0.7 下载链接
http://download.redis.io/releases/redis-5.0.7.tar.gz
源码阅读顺序参考:
https://github.com/huangz1990/blog/blob/master/diary/2014/how-to-read-redis-source-code.rst
其它参考:
https://zhuanlan.zhihu.com/p/42156903
以上是 redis5.0.7源码阅读——字典dict 的全部内容, 来源链接: utcz.com/z/532094.html