年《财富》中国500强排行榜数据爬取,看看都有哪些[Python基础]

python

前言

一个简单的demo,python爬虫,其实是以前的存货,很久很久没有写爬虫了,渣渣更渣了啊!

爬取财富中文网,2020年《财富》中国500强排行榜相关数据,数据都在网页源码里,结构也比较清晰,基本上一个请求页面可以搞定所有数据,一个老哥要的数据,用来做数据分析!

 

新人可以用来练手的网站,这里给出参考demo,仅供参考和学习使用!

fake_useragent库本地使用

来自于吾爱破解网站(ID:jxt441621944)上的分享,fake_useragent库也是本渣渣比较喜欢使用的一个库,比较方便吧,好用倒也说不上,看着用吧,fake_useragent库本地使用方法,这里给大家整理和打包了一下!

UserAgent就是用户代{过}{滤}理,是一串字符串,相当于是浏览器的身份证明,在写爬虫的时候频繁更换请求头中的UserAgent可以避免触发反爬机制(配合代{过}{滤}理IP食用更佳)。

fake_useragent就是可以获得一个随机的用户代{过}{滤}理的库。

fake_useragent库总共250条UA!

UA库文件:fake_ua.txt

py调用文件:fakeua.py

import random

with open("fake_ua.txt", "r") as f:

fake_ua = [fua.strip() for fua in f.readlines()]

print(random.choice(fake_ua))

python爬虫2020年《财富》中国500强排行榜数据爬取demo

import requests,random

from lxml import etree

import xlsxwriter

class Httprequest(object):

ua_list = [

"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36Chrome 17.0",

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",

"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0Firefox 4.0.1",

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1",

"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50",

"Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50",

"Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11",

]

@property #把方法变成属性的装饰器

def random_headers(self):

return {

"User-Agent": random.choice(self.ua_list)

}

class Get_data(Httprequest):

def__init__(self):

self.url="http://www.fortunechina.com/fortune500/c/2020-07/27/content_369925.htm"

self.murl="http://www.fortunechina.com/fortune500/c/2020-05/18/content_365275.htm"

def get_data(self):

html=requests.get(self.url,headers=self.random_headers,timeout=5).content.decode("utf-8")

#print(html)

req = etree.HTML(html)

rankings=req.xpath("//table[@class="wt-table"]/tbody/tr/td[1]/text()")

last_rankings=req.xpath("//table[@class="wt-table"]/tbody/tr/td[2]/text()")

companys=req.xpath("//table[@class="wt-table"]/tbody/tr/td[3]/a/text()")

incomes=req.xpath("//table[@class="wt-table"]/tbody/tr/td[4]/text()")

profits=req.xpath("//table[@class="wt-table"]/tbody/tr/td[5]/text()")

# print(ranking)

# print(last_ranking)

# print(company)

# print(income)

# print(profit)

data_list=[]

for ranking,last_ranking,company,income,profit in zip(

rankings, last_rankings, companys, incomes, profits

):

data = [

ranking,last_ranking,company,income,profit

]

print(data)

data_list.append(data)

print("

")

self.write_to_xlsx(data_list)

def write_to_xlsx(self, data_list):

workbook = xlsxwriter.Workbook("{}_search_results.xlsx".format("2020年《财富》中国500强排行榜")) # 创建一个Excel文件

worksheet = workbook.add_worksheet("2020年《财富》中国500强排行榜")

title = ["排名", "上年排名", "公司名称(中文)", "营业收入(百万元)", "利润(百万元)"] # 表格title

worksheet.write_row("A1", title)

for index, data in enumerate(data_list):

# content = content.rstrip()

# keyword, rank, include_num, chart_url, title, game_id, company_num, long_words_num = data

num0 = str(index + 2)

row = "A" + num0

# data = [name, size, game_id]

worksheet.write_row(row, data)

workbook.close()

def get_mdata(self):

html=requests.get(self.murl,headers=self.random_headers,timeout=5).content.decode("utf-8")

#print(html)

req = etree.HTML(html)

rankings=req.xpath("//table[@class="wt-table"]/tbody/tr/td[1]/text()")

companys=req.xpath("//table[@class="wt-table"]/tbody/tr/td[2]/a/text()")

incomes=req.xpath("//table[@class="wt-table"]/tbody/tr/td[3]/text()")

profits=req.xpath("//table[@class="wt-table"]/tbody/tr/td[4]/text()")

data_list=[]

for ranking,company,income,profit in zip(

rankings,companys, incomes, profits

):

data = [

ranking,company,income,profit

]

print(data)

data_list.append(data)

print("

")

self.write_to_mxlsx(data_list)

def write_to_mxlsx(self, data_list):

workbook = xlsxwriter.Workbook("{}_search_results.xlsx".format("2020年《财富》美国500强排行榜")) # 创建一个Excel文件

worksheet = workbook.add_worksheet("2020年《财富》美国500强排行榜")

title = ["排名", "公司名称(中文)", "营业收入(百万美元)", "利润(百万美元)"] # 表格title

worksheet.write_row("A1", title)

for index, data in enumerate(data_list):

# content = content.rstrip()

# keyword, rank, include_num, chart_url, title, game_id, company_num, long_words_num = data

num0 = str(index + 2)

row = "A" + num0

# data = [name, size, game_id]

worksheet.write_row(row, data)

workbook.close()

if__name__=="__main__":

spider=Get_data()

#spider.get_data()

spider.get_mdata()

以上是 年《财富》中国500强排行榜数据爬取,看看都有哪些[Python基础] 的全部内容, 来源链接: utcz.com/z/530413.html

回到顶部