利用Python简单实现网易云用户算法推荐系统

python

笔者最近面试到了网易新闻推荐部门,考了一点推荐系统的知识,算是被虐惨了。于是乎自己怒补了一些知识。记录一点关于推荐系统的知识和实现。 
音乐推荐系统,这里的简单指的是数据量级才2万条,之后会详细解释。

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!??¤
QQ群:961562169

1. 推荐系统工程师人才成长RoadMap

2. 1. 数据的获取

任何的机器学习算法解决问题,首先就是要考虑的是数据,数据从何而来? 
对于网易云音乐这样的企业而言,用户的收藏和播放数据是可以直接获得的,我们找一个取巧的方式,包含用户音乐兴趣信息,同时又可以获取的数据是什么?

对的,是热门歌单信息,以及歌单内歌曲的详细信息。 

3. 数据爬虫脚本

代码说明: 
1. 网易云音乐网络爬虫由于加了数据包传动态参数的反爬措施。拿到歌单数据包的难度很大。一大神破解了传参动态密码,代码中AES算法。 
2. 但是不知道为什么这个python2.7版下脚本只能爬取每个歌单里面的10首歌,由于这个原因,导致我们的推荐系统原始数据量级骤然降低。笔者试了很久,也没有办法。望大家给点建议。不管怎样,数据量小,那咱们就简单实现就好。 
3. 一共1921个歌单(json文件),每个歌单里面包含10首歌,所以咱们后面建模的数据量实际只有2W左右的实例。

# -*- coding:utf-8 -*-

"""

爬虫爬取网易云音乐歌单的数据包保存成json文件

python2.7环境

"""

import requests

import json

import os

import base64

import binascii

import urllib

import urllib2

from Crypto.Cipher import AES

from bs4 import BeautifulSoup

class NetEaseAPI:

def __init__(self):

self.header = {

"Host": "music.163.com",

"Origin": "https://music.163.com",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:56.0) Gecko/20100101 Firefox/56.0",

"Accept": "application/json, text/javascript",

"Accept-Language": "zh-CN,zh;q=0.9",

"Connection": "keep-alive",

"Content-Type": "application/x-www-form-urlencoded",

}

self.cookies = {"appver": "1.5.2"}

self.playlist_class_dict = {}

self.session = requests.Session()

def _http_request(self, method, action, query=None, urlencoded=None, callback=None, timeout=None):

connection = json.loads(self._raw_http_request(method, action, query, urlencoded, callback, timeout))

return connection

def _raw_http_request(self, method, action, query=None, urlencoded=None, callback=None, timeout=None):

if method == "GET":

request = urllib2.Request(action, self.header)

response = urllib2.urlopen(request)

connection = response.read()

elif method == "POST":

data = urllib.urlencode(query)

request = urllib2.Request(action, data, self.header)

response = urllib2.urlopen(request)

connection = response.read()

return connection

@staticmethod

def _aes_encrypt(text, secKey):

pad = 16 - len(text) % 16

text = text + chr(pad) * pad

encryptor = AES.new(secKey, 2, "0102030405060708")

ciphertext = encryptor.encrypt(text)

ciphertext = base64.b64encode(ciphertext).decode("utf-8")

return ciphertext

@staticmethod

def _rsa_encrypt(text, pubKey, modulus):

text = text[::-1]

rs = pow(int(binascii.hexlify(text), 16), int(pubKey, 16), int(modulus, 16))

return format(rs, "x").zfill(256)

@staticmethod

def _create_secret_key(size):

return ("".join(map(lambda xx: (hex(ord(xx))[2:]), os.urandom(size))))[0:16]

def get_playlist_id(self, action):

request = urllib2.Request(action, headers=self.header)

response = urllib2.urlopen(request)

html = response.read().decode("utf-8")

response.close()

soup = BeautifulSoup(html, "lxml")

list_url = soup.select("ul#m-pl-container li div a.msk")

for k, v in enumerate(list_url):

list_url[k] = v["href"][13:]

return list_url

def get_playlist_detail(self, id):

text = {

"id": id,

"limit": "100",

"total": "true"

}

text = json.dumps(text)

nonce = "0CoJUm6Qyw8W8jud"

pubKey = "010001"

modulus = ("00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7"

"b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280"

"104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932"

"575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b"

"3ece0462db0a22b8e7")

secKey = self._create_secret_key(16)

encText = self._aes_encrypt(self._aes_encrypt(text, nonce), secKey)

encSecKey = self._rsa_encrypt(secKey, pubKey, modulus)

data = {

"params": encText,

"encSecKey": encSecKey

}

action = "http://music.163.com/weapi/v3/playlist/detail"

playlist_detail = self._http_request("POST", action, data)

return playlist_detail

if __name__ == "__main__":

nn = NetEaseAPI()

index = 1

for flag in range(1, 38):

if flag > 1:

page = (flag - 1) * 35

url = "http://music.163.com/discover/playlist/?order=hot&cat=%E5%85%A8%E9%83%A8&limit=35&offset=" + str(

page)

else:

url = "http://music.163.com/discover/playlist"

playlist_id = nn.get_playlist_id(url)

for item_id in playlist_id:

playlist_detail = nn.get_playlist_detail(item_id)

with open("{0}.json".format(index), "w") as file_obj:

json.dump(playlist_detail, file_obj, ensure_ascii=False)

index += 1

print("写入json文件:", item_id)

4. 特征工程和数据预处理,提取我这次做推荐系统有用的特征信息。

在原始的1291个json文件里面包含非常多的信息(风格,歌手,歌曲播放次数,歌曲时长,歌曲发行时间),其实大家思考后一定会想到如何使用它们进一步完善推荐系统。我这里依旧使用最基础的音乐信息,我们认为同一个歌单中的歌曲,有比较高的相似性,

其中 歌单数据=>推荐系统格式数据,主流的python推荐系统框架,支持的最基本数据格式为movielens dataset,其评分数据格式为 user item rating timestamp,为了简单,我们也把数据处理成这个格式。

# -*- coding:utf-8-*-

"""

对网易云所有歌单爬虫的json文件进行数据预处理成csv文件

python3.6环境

"""

from __future__ import (absolute_import, division, print_function, unicode_literals)

import json

def parse_playlist_item():

"""

:return: 解析成userid itemid rating timestamp行格式

"""

file = open("neteasy_playlist_recommend_data.csv", "a", encoding="utf8")

for i in range(1, 1292):

with open("neteasy_playlist_data/{0}.json".format(i), "r", encoding="UTF-8") as load_f:

load_dict = json.load(load_f)

try:

for item in load_dict["playlist"]["tracks"]:

# playlist id # song id # score # datetime

line_result = [load_dict["playlist"]["id"], item["id"], item["pop"], item["publishTime"]]

for k, v in enumerate(line_result):

if k == len(line_result) - 1:

file.write(str(v))

else:

file.write(str(v) + ",")

file.write("

")

except Exception:

print(i)

continue

file.close()

def parse_playlist_id_to_name():

file = open("neteasy_playlist_id_to_name_data.csv", "a", encoding="utf8")

for i in range(1, 1292):

with open("neteasy_playlist_data/{0}.json".format(i), "r", encoding="UTF-8") as load_f:

load_dict = json.load(load_f)

try:

line_result = [load_dict["playlist"]["id"], load_dict["playlist"]["name"]]

for k, v in enumerate(line_result):

if k == len(line_result) - 1:

file.write(str(v))

else:

file.write(str(v) + ",")

file.write("

")

except Exception:

print(i)

continue

file.close()

def parse_song_id_to_name():

file = open("neteasy_song_id_to_name_data.csv", "a", encoding="utf8")

for i in range(1, 1292):

with open("neteasy_playlist_data/{0}.json".format(i), "r", encoding="UTF-8") as load_f:

load_dict = json.load(load_f)

try:

for item in load_dict["playlist"]["tracks"]:

# playlist id # song id # score # datetime

line_result = [item["id"], item["name"] + "-" + item["ar"][0]["name"]]

for k, v in enumerate(line_result):

if k == len(line_result) - 1:

file.write(str(v))

else:

file.write(str(v) + ",")

file.write("

")

except Exception:

print(i)

continue

file.close()

# parse_playlist_item()

# parse_playlist_id_to_name()

# parse_song_id_to_name()

5. 数据说明

​ 
我们需要保存 歌单id=>歌单名 和 歌曲id=>歌曲名 的信息后期备用。

歌曲id=>歌曲名: 

歌单id=>歌单名: 

6. 推荐系统常见的工程化做法

project = offline modelling + online prediction 
1)offline 
python脚本语言 
2)online 
效率至上 C++/Java 
原则:能离线预先算好的,都离线算好,最优的形式:线上是一个K-V字典

1.针对用户推荐 网易云音乐(每日30首歌/7首歌) 
2.针对歌曲 在你听某首歌的时候,找“相似歌曲”

7. Surprise推荐库简单介绍

在推荐系统的建模过程中,我们将用到python库 Surprise(Simple Python RecommendatIon System Engine),是scikit系列中的一个(很多同学用过scikit-learn和scikit-image等库)。

具体的配合这篇博文(Python推荐系统库——Surprise)深入学习Surprise。

8. 网易云音乐歌单推荐

利用surprise推荐库中KNN协同过滤算法进行已有数据的建模,并且推荐相似的歌单预测

# -*- coding:utf-8-*-

"""

利用surprise推荐库 KNN协同过滤算法推荐网易云歌单

python2.7环境

"""

from __future__ import (absolute_import, division, print_function, unicode_literals)

import os

import csv

from surprise import KNNBaseline, Reader, KNNBasic, KNNWithMeans,evaluate

from surprise import Dataset

def recommend_model():

file_path = os.path.expanduser("neteasy_playlist_recommend_data.csv")

# 指定文件格式

reader = Reader(line_format="user item rating timestamp", sep=",")

# 从文件读取数据

music_data = Dataset.load_from_file(file_path, reader=reader)

# 计算歌曲和歌曲之间的相似度

train_set = music_data.build_full_trainset()

print("开始使用协同过滤算法训练推荐模型...")

algo = KNNBasic()

algo.fit(train_set)

return algo

def playlist_data_preprocessing():

csv_reader = csv.reader(open("neteasy_playlist_id_to_name_data.csv"))

id_name_dic = {}

name_id_dic = {}

for row in csv_reader:

id_name_dic[row[0]] = row[1]

name_id_dic[row[1]] = row[0]

return id_name_dic, name_id_dic

def song_data_preprocessing():

csv_reader = csv.reader(open("neteasy_song_id_to_name_data.csv"))

id_name_dic = {}

name_id_dic = {}

for row in csv_reader:

id_name_dic[row[0]] = row[1]

name_id_dic[row[1]] = row[0]

return id_name_dic, name_id_dic

def playlist_recommend_main():

print("加载歌单id到歌单名的字典映射...")

print("加载歌单名到歌单id的字典映射...")

id_name_dic, name_id_dic = playlist_data_preprocessing()

print("字典映射成功...")

print("构建数据集...")

algo = recommend_model()

print("模型训练结束...")

current_playlist_id = id_name_dic.keys()[200]

print("当前的歌单id:" + current_playlist_id)

current_playlist_name = id_name_dic[current_playlist_id]

print("当前的歌单名字:" + current_playlist_name)

playlist_inner_id = algo.trainset.to_inner_uid(current_playlist_id)

print("当前的歌单内部id:" + str(playlist_inner_id))

playlist_neighbors = algo.get_neighbors(playlist_inner_id, k=10)

playlist_neighbors_id = (algo.trainset.to_raw_uid(inner_id) for inner_id in playlist_neighbors)

# 把歌曲id转成歌曲名字

playlist_neighbors_name = (id_name_dic[playlist_id] for playlist_id in playlist_neighbors_id)

print("和歌单<", current_playlist_name, "> 最接近的10个歌单为:

")

for playlist_name in playlist_neighbors_name:

print(playlist_name, name_id_dic[playlist_name])

playlist_recommend_main()

# "E:ProgramingSoftwarePyCharm Community Edition 2016.2.3Anaconda2python2.exe" C:/Users/Administrator/Desktop/博客素材/recommend_system_learning/recommend_main.py

# 加载歌单id到歌单名的字典映射...

# 加载歌单名到歌单id的字典映射...

# 字典映射成功...

# 构建数据集...

# 开始使用协同过滤算法训练推荐模型...

# Computing the msd similarity matrix...

# Done computing similarity matrix.

# 模型训练结束...

# 当前的歌单id:2056644233

# 当前的歌单名字:暖阳微醺◎来碗甜度100%的糖水吧

# 当前的歌单内部id:444

# 和歌单< 暖阳微醺◎来碗甜度100%的糖水吧 > 最接近的10个歌单为:

#

# 2018全年抖腿指南,老铁你怕了吗? 2050704516

# 2018欧美最新流行单曲推荐【持续更新】 2042762698

# 「女毒电子」●酒心巧克力般的甜蜜圈套 2023282769

# 『 2018优质新歌电音推送 』 2000367772

# 那些为电音画龙点睛的惊艳女Vocals 2081768956

# 女嗓篇 |不可以这么俏皮清新 我会喜欢你的 2098623867

# 「柔美唱腔」时光不敌粉嫩少女心 2093450772

# 「节奏甜食」次点甜醹发酵的牛奶草莓 2069080336

# 03.23 ✘ 欧美热浪新歌 ‖ 周更向 2151684623

# 开门呀 小可爱送温暖 2151816466

#

# Process finished with exit code 0

协同过滤模型的评估验证方法:

file_path = os.path.expanduser("neteasy_playlist_recommend_data.csv")

# 指定文件格式

reader = Reader(line_format="user item rating timestamp", sep=",")

# 从文件读取数据

music_data = Dataset.load_from_file(file_path, reader=reader)

# 分成5折

music_data.split(n_folds=5)

algo = KNNBasic()

perf = evaluate(algo, music_data, measures=["RMSE", "MAE"])

print(perf)

"""

Evaluating RMSE, MAE of algorithm KNNBasic.

------------

Fold 1

Computing the msd similarity matrix...

Done computing similarity matrix.

RMSE: 85.4426

MAE: 82.4766

------------

Fold 2

Computing the msd similarity matrix...

Done computing similarity matrix.

RMSE: 85.2970

MAE: 82.0756

------------

Fold 3

Computing the msd similarity matrix...

Done computing similarity matrix.

RMSE: 85.2267

MAE: 82.0697

------------

Fold 4

Computing the msd similarity matrix...

Done computing similarity matrix.

RMSE: 85.3390

MAE: 82.1538

------------

Fold 5

Computing the msd similarity matrix...

Done computing similarity matrix.

RMSE: 86.0862

MAE: 83.2907

------------

------------

Mean RMSE: 85.4783

Mean MAE : 82.4133

------------

------------

defaultdict(<type "list">, {u"mae": [82.476559473072456, 82.075552111584656, 82.069740410693527, 82.153816350251844, 83.29069767441861], u"rmse": [85.442585928330303, 85.29704915378538, 85.22667089592963, 85.339041675515148, 86.086152088447705]})

"""

以上是 利用Python简单实现网易云用户算法推荐系统 的全部内容, 来源链接: utcz.com/z/530026.html

回到顶部