Pythonsklearn中的算法如何使用?

python

本章内容非常适合有些同学想要从事机器人开发的,我们在正式开始学习之前,一定是先对基础的内容进行了解,包括函数,方法,语法等等,当然还有我们本章要让大家接触的算法,重要的,也是经常会在机器上面遇到的sklearn算法,肯定有很多人不了解吧,那就一起来看下吧~

1、高斯朴素贝叶斯 (GaussianNB)

介绍如何使用sklearn来实现GaussianNB

from sklearn import datasets

iris = datasets.load_iris()

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)

print("Number of mislabeled points out of a total %d points : %d"

 % (iris.data.shape[0],(iris.target != y_pred).sum()))

2、多项式朴素贝叶斯 (MultinomialNB/MNB)

随机生成一组数据,然后使用MultinomialNB算法来学习。

import numpy as np

X = np.random.randint(50, size=(1000, 100))

y = np.random.randint(6, size=(1000))

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB()

clf.fit(X, y)

print(clf.predict(X[2:3]))

3. 伯努利朴素贝叶斯 (BernoulliNB)

BernoulliNB实现了基于多元伯努利分布的数据的朴素贝叶斯训练和分类算法

案例:

import numpy as np

X = np.random.randint(50, size=(1000, 100))

y = np.random.randint(6, size=(1000))

from sklearn.naive_bayes import BernoulliNB

clf = BernoulliNB()

clf.fit(X, Y)

print(clf.predict(X[2:3]))

4. 决策树

决策树作为十大经典算法之一,能够很好的处理多分类问题。

决策树的sklearn接口:

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

好啦,以上就是关于sklearn里面的算法使用了哦~大家如果想了解机器人学习的可以多多看下哦~如果大家还想了解更多的机器人学习知识,可以到网上下载了解。

以上是 Pythonsklearn中的算法如何使用? 的全部内容, 来源链接: utcz.com/z/529061.html

回到顶部