使用二分法(BisectionMethod)求平方根。
使用二分法(Bisection Method)求平方根。
def sqrtBI(x, epsilon):assert x>0, "X must be non-nagtive, not " + str(x)
assert epsilon > 0, "epsilon must be postive, not " + str(epsilon)
low = 0
high = x
guess = (low + high)/2.0
counter = 1
while (abs(guess ** 2 - x) > epsilon) and (counter <= 100):
if guess ** 2 < x:
low = guess
else :
high = guess
guess = (low + high)/2.0
counter += 1
return guess
验证一下。
>>> sqrtBI(2,0.000001)
>>> 1.41421365738
上面的方法,如果 X<1 ,就会有问题。因为 X (X<1)的平方根不在 [0, x] 的范围内。例如,0.25,它的平方根——0.5 不在 [0, 0.25] 的区间内。
>>> sqrtBI(0.25,0.000001)
>>> 0.25
那如何求0.25的平方根呢?
只要略微改动上面的代码即可。注意6行和7行的代码。
def sqrtBI(x, epsilon):assert x>0, "X must be non-nagtive, not " + str(x)
assert epsilon > 0, "epsilon must be postive, not " + str(epsilon)
low = 0
high = max(x, 1.0)
## high = x
guess = (low + high)/2.0
counter = 1
while (abs(guess ** 2 - x) > epsilon) and (counter <= 100):
if guess ** 2 < x:
low = guess
else :
high = guess
guess = (low + high)/2.0
counter += 1
return guess
验证一下:
>>> sqrtBI(0.25,0.000001)
>>> 0.5
以上是 使用二分法(BisectionMethod)求平方根。 的全部内容, 来源链接: utcz.com/z/523342.html