python几个__开头的方法解释

python

在Python中有许多以__开头的变量,这些变量是什么意思呢?这里介绍下[__dir__, __slots__, __weakref__,__missing__, __contains__]

__dir__ -> 看个小例子就知道了

In [1]: class T(object):

   ...:     pass

   ...:

In [2]: t = T()

In [3]: t.<Tab>

啥也没有...

In [4]: class T2(object):

   ...:     def __dir__(self):

   ...:         return ['a', 'b']

   ...:

In [5]: t = T2()

In [6]: t.

t.a  t.b

In [7]: dir(t)

Out[7]: ['a', 'b']

看出来了把, 不解释, 但是这个__dir__是相对于类的实例有效果的.

__slots__

这个在我初学python的时候就被模糊了, 原来的理解是它的出现替代了__dict__,也就是说你只能给__slots__ 这个变量列表项的属性赋值. 对外的接口减少了,也安全了. 后来看了这篇Saving 9 GB of RAM with Python’s slots. 好久不做运维了,在生产环境究竟怎么样我无法定论, 也提到了,在对象实例很多的时候他能帮助减少内存, 详见https://www.safaribooksonline.com/library/view/python-cookbook-3rd/9781449357337/ch08s04.html. 这里来个小实验(在Hacker News也被讨论过https://news.ycombinator.com/item?id=6750187)

代码例子(我对细节做注释):

# coding=utf-8

import sys

from itertools import starmap, product

class SlotTest(object):

    # __slots__ = ['x', 'y', 'z'] 主要对比去掉这句和包含这句程序内存占用

    def __init__(self, x, y, z):

            self.x = x

                    self.y = y

                            self.z = z

    def __str__(self):

            return "{} {} {}".format(self.x, self.y, self.z)

p = product(range(10000), range(20), [4]) # 创建0-1000 & 0-20 & 4 的笛卡尔积

a = list(starmap(SlotTest, p)) # 相当于对每个SlotTest实例化,实例化的格式是p的长度

print a[0]

sys.stdin.read(1)

结果对比:

$pmap -x `ps -ef|grep test_slot.py|grep -v grep|awk '{print $2}'`|grep total # 未使用__slots__

  total kB          103496   76480   73728

$pmap -x `ps -ef|grep test_slot.py|grep -v grep|awk '{print $2}'`|grep total # 使用了__slots__

  total kB           49960   22888   20136

结果很明显,内存占用减少了很多...

__weakref__ 弱引用

首先先说下weakref: 弱引用,与强引用相对,是指不能确保其引用的对象不会被垃圾回收器回收的引用。一个对象若只被弱引用所引用,则被认为是不可访问(或弱可访问)的,并因此可能在任何时刻被回收. 在Python中,当一个对象的引用数目为0的时候,才会被从内存中回收. 但是被循环引用呢?

In [1]: import weakref

In [2]: import gc

In [3]: class Obj(object):

   ...:     def a(self):

   ...:         return 1

   ...:

In [4]: obj = Obj()

In [5]: s = obj

In [6]: gc.collect() # 不可达引用对象的数量

Out[6]: 3

In [7]: print s is obj

True

In [8]: obj = 1 # 最初的被引用的对象改变了.

In [9]: gc.collect()

Out[9]: 0

In [10]: s is None # s还是指向了Obj 引用计数为1

Out[10]: False

In [11]: s

Out[11]: <__main__.Obj at 0x2b36510>

----华丽的分割一下

In [12]: obj = Obj()

In [13]: r = weakref.ref(obj) # 让obj变成那个弱引用

In [14]: gc.collect()

Out[14]: 211

In [15]: r() is obj

True

In [16]: obj = 1

In [17]: gc.collect()

Out[17]: 0

In [18]: r() is None # 弱引用计数器没有增加,所以当obj不在引用Obj的时候,Obj对象就被释放了

Out[18]: True

好吧, 我的总结是弱引用是个好东西, 但是加了__slots__就不支持弱引用了. 所以需要__weakref__

In [9]: class T3(object):

   ...:     __slots__ = []

      ...:

In [10]: class T4(object):

   ....:     __slots__ = '__weakref__'  # 这样就支持了weakref

      ....:

In [11]:  import weakref

In [12]: t3 = T3()

In [13]: t4 = T4()

In [14]: weakref.ref(t3)

---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-14-bdb7ab7ac3bc> in <module>()

----> 1 weakref.ref(t3)

TypeError: cannot create weak reference to 'T3' object

In [15]: weakref.ref(t4)

Out[15]: <weakref at 0x2766f70; to 'T4' at 0x2586fd8>

__contains__ 判断某值 in/not in 实例

In [1]: class NewList(object):

   ...:     def __init(self, values):

   ...:         self.values = values

   ...:     def __contains__(self, value):

   ...:         return value in self.values

   ...:

In [2]: l = NewList([1, 2, 3, 4])

In [3]: 4 in l

Out[3]: True

In [4]: 10 in l

Out[4]: False

__missing__

最初看这个特殊方法是看python标准库的源码的时候(collections#L421):

class Counter(dict):

    ...

    def __missing__(self, key):

        'The count of elements not in the Counter is zero.'

        # Needed so that self[missing_item] does not raise KeyError

        return 0

什么意思呢?

In [6]: c = collections.Counter({'a':1})

In [7]: c['b'] # 没有键的count设置默认值0

Out[7]: 0

以上是 python几个__开头的方法解释 的全部内容, 来源链接: utcz.com/z/523019.html

回到顶部