Python3多线程爬虫实例讲解

python

多线程概述

多线程使得程序内部可以分出多个线程来做多件事情,充分利用CPU空闲时间,提升处理效率。python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补。并且在Python3中废弃了thread模块,保留了更强大的threading模块。

使用场景

在python的原始解释器CPython中存在着GIL(Global Interpreter Lock,全局解释器锁),因此在解释执行python代码时,会产生互斥锁来限制线程对共享资源的访问,直到解释器遇到I/O操作或者操作次数达到一定数目时才会释放GIL。所以,虽然CPython的线程库直接封装了系统的原生线程,但CPython整体作为一个进程,同一时间只会有一个获得GIL的线程在跑,其他线程则处于等待状态。这就造成了即使在多核CPU中,多线程也只是做着分时切换而已。

如果你的程序是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有上下文切换开销。但是如果你的代码是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,多线程可以明显提高效率,例如多线程爬虫,多线程文件处理等等

多线程爬虫

多线程爬虫的代码实例

注: 以下代码在python3下运行通过, python2版本差异较大,不能运行成功,如需帮助请下方留意。

# coding=utf-8

import threading, queue, time, urllib

from  urllib import request

baseUrl = 'http://www.pythontab.com/html/pythonjichu/'

urlQueue = queue.Queue()

for i in range(2, 10):

    url = baseUrl + str(i) + '.html'

    urlQueue.put(url)

    #print(url)

def fetchUrl(urlQueue):

    while True:

        try:

            #不阻塞的读取队列数据

            url = urlQueue.get_nowait()

            i = urlQueue.qsize()

        except Exception as e:

            break

        print ('Current Thread Name %s, Url: %s ' % (threading.currentThread().name, url))

        try:

            response = urllib.request.urlopen(url)

            responseCode = response.getcode()

        except Exception as e:

            continue

        if responseCode == 200:

            #抓取内容的数据处理可以放到这里

            #为了突出效果, 设置延时

            time.sleep(1)

if __name__ == '__main__':

    startTime = time.time()

    threads = []

    # 可以调节线程数, 进而控制抓取速度

    threadNum = 4

    for i in range(0, threadNum):

        t = threading.Thread(target=fetchUrl, args=(urlQueue,))

        threads.append(t)

    for t in threads:

        t.start()

    for t in threads:

        #多线程多join的情况下,依次执行各线程的join方法, 这样可以确保主线程最后退出, 且各个线程间没有阻塞

        t.join()

    endTime = time.time()

    print ('Done, Time cost: %s ' %  (endTime - startTime))


运行结果:

1个线程时:

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/2.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/3.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/4.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/5.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/6.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/7.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/8.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/9.html 

Done, Time cost: 8.182249069213867

2个线程时:

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/2.html 

Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/3.html 

Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/4.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/5.html 

Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/6.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/7.html 

Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/8.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/9.html 

Done, Time cost: 4.0987958908081055

3个线程时:

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/2.html 

Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/3.html 

Current Thread Name Thread-3, Url: http://www.pythontab.com/html/pythonjichu/4.html 

Current Thread Name Thread-4, Url: http://www.pythontab.com/html/pythonjichu/5.html 

Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/6.html 

Current Thread Name Thread-4, Url: http://www.pythontab.com/html/pythonjichu/7.html 

Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/9.html 

Current Thread Name Thread-3, Url: http://www.pythontab.com/html/pythonjichu/8.html 

Done, Time cost: 2.287320137023926

通过调节线程数可以看到,执行时间会随着线程数的增加而缩短,抓取效率成正比增加。

总结:

Python多线程在IO密集型任务,多线程可以明显提高效率,CPU密集型任务不适合使用多线程处理。


以上是 Python3多线程爬虫实例讲解 的全部内容, 来源链接: utcz.com/z/522225.html

回到顶部