linux2.4.0版本内核代码fork.c浅显分析

编程

结合fork.c文件分析进程创建的过程


本文为作业任务,只做浅显的分析,为大家提供一个分析的思路,很多细节都没有展示。如果想要更详细的分析请去搜索相关函数代码,云海天内有许多有用的信息供大家学习。

 

int nr_threads;

int nr_running;

int max_threads;

unsigned long total_forks; /* Handle normal Linux uptimes. */

int last_pid;

struct task_struct *pidhash[PIDHASH_SZ];

 

文件开头定义了线程数量,进程数量,最大线程数,创建的进程总个数,最新的pid号以及存放pid号的哈希表。

void add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)

{

unsigned long flags;

wq_write_lock_irqsave(&q->lock, flags);

wait->flags = 0;

__add_wait_queue(q, wait);

wq_write_unlock_irqrestore(&q->lock, flags);

}

void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait)

{

unsigned long flags;

wq_write_lock_irqsave(&q->lock, flags);

wait->flags = WQ_FLAG_EXCLUSIVE;

__add_wait_queue_tail(q, wait);

wq_write_unlock_irqrestore(&q->lock, flags);

}

void remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)

{

unsigned long flags;

wq_write_lock_irqsave(&q->lock, flags);

__remove_wait_queue(q, wait);

wq_write_unlock_irqrestore(&q->lock, flags);

}

 

这部分代码与进程的等待队列有关。Linux内核的等待队列是以双循环链表为基础数据结构,与进程调度机制紧密结合,能够用于实现核心的异步事件通知机制。等待队列在include/linux/wait.h中,这是一个通过list_head连接的典型双循环链表,在这个链表中,有两种数据结构:等待队列头(wait_queue_head_t)和等待队列项(wait_queue_t)。等待队列头和等待队列项中都包含一个list_head类型的域作为"连接件"。由于我们只需要对队列进行添加和删除操作,并不会修改其中的对象(等待队列项),因此,我们只需要提供一把保护整个基础设施和所有对象的锁,这把锁保存在等待队列头中,为wq_lock_t类型。在实现中,可以支持读写锁(rwlock)或自旋锁(spinlock)两种类型,通过一个宏定义来切换。如果使用读写锁,将wq_lock_t定义为rwlock_t类型;如果是自旋锁,将wq_lock_t定义为spinlock_t类型。无论哪种情况,分别相应设置wq_read_lock、wq_read_unlock、wq_read_lock_irqsave、wq_read_unlock_irqrestore、wq_write_lock_irq、wq_write_unlock、wq_write_lock_irqsave和wq_write_unlock_irqrestore等宏。在__wait_queue 中定义的WQ_FLAG_EXCLUSIVE表示节点对应的进程对临界资源具有排他性。remove_wait_queue函数用于将等待队列项wait从以q为等待队列头的等待队列中移除

 

void __init fork_init(unsigned long mempages)

{

/*

* The default maximum number of threads is set to a safe

* value: the thread structures can take up at most half

* of memory.

*/

max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 2;

init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;

init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;

}

 

 

如注释所说,默认的最大线程数被设置为一个安全值:线程结构最多可以占用一半的内存。__init在include/linux/wait.h中,作用为将带有__init标识符的函数划分到.init.text段中,此段只在启动时做一次初始化载入。

/* Protects next_safe and last_pid. */

spinlock_t lastpid_lock = SPIN_LOCK_UNLOCKED;

staticint get_pid(unsigned long flags)

{

staticint next_safe = PID_MAX;

struct task_struct *p;

if (flags & CLONE_PID)

return current->pid;

spin_lock(&lastpid_lock);

if((++last_pid) & 0xffff8000) {

last_pid = 300; /* Skip daemons etc. */

goto inside;

}

if(last_pid >= next_safe) {

inside:

next_safe = PID_MAX;

read_lock(&tasklist_lock);

repeat:

for_each_task(p) {

if(p->pid == last_pid ||

p->pgrp == last_pid ||

p->session == last_pid) {

if(++last_pid >= next_safe) {

if(last_pid & 0xffff8000)

last_pid = 300;

next_safe = PID_MAX;

}

goto repeat;

}

if(p->pid > last_pid && next_safe > p->pid)

next_safe = p->pid;

if(p->pgrp > last_pid && next_safe > p->pgrp)

next_safe = p->pgrp;

if(p->session > last_pid && next_safe > p->session)

next_safe = p->session;

}

read_unlock(&tasklist_lock);

}

spin_unlock(&lastpid_lock);

return last_pid;

}

 

这部分代码用来给进程分配pid,对get_pid函数添加自旋锁保证函数的运行,对tasklist_lock添加读锁,确保pid数据安全。last_pid用于记录上一次分配给进程时的pid值。分配的pid一般而言是last_pid+1,如果超出进程个数的最大值(0xffff8000),那么进程pid值从300开始重新查找未用的。也就是说,一般用户进程的pid值范围[300,ffff8000]。(0~299,留给系统)。变量next_safe的含义是,在[last_pid,next_safe]之间,都是没有使用过的pid,一旦last_pid+1大于了next_safe,也就是说pid值进入了不可靠空间,有可能这个值被使用,这时需要遍历task来确认。这样遍历task找到一个没有用过的pid,同时确定next_safe,以保证next_safe到last_pid的区间中pid是空闲的,这样只要再次分配pid时,其值小于next_safe就可以直接分配,而不需要遍历task来查找空闲的pid。

 

static inline int dup_mmap(struct mm_struct * mm)

{

struct vm_area_struct * mpnt, *tmp, **pprev;

int retval;

flush_cache_mm(current->mm);

mm->locked_vm = 0;

mm->mmap = NULL;

mm->mmap_avl = NULL;

mm->mmap_cache = NULL;

mm->map_count = 0;

mm->cpu_vm_mask = 0;

mm->swap_cnt = 0;

mm->swap_address = 0;

pprev = &mm->mmap;

for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {

struct file *file;

retval = -ENOMEM;

if(mpnt->vm_flags & VM_DONTCOPY)

continue;

tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

if (!tmp)

goto fail_nomem;

*tmp = *mpnt;

tmp->vm_flags &= ~VM_LOCKED;

tmp->vm_mm = mm;

mm->map_count++;

tmp->vm_next = NULL;

file = tmp->vm_file;

if (file) {

struct inode *inode = file->f_dentry->d_inode;

get_file(file);

if (tmp->vm_flags & VM_DENYWRITE)

atomic_dec(&inode->i_writecount);

/* insert tmp into the share list, just after mpnt */

spin_lock(&inode->i_mapping->i_shared_lock);

if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)

mpnt->vm_next_share->vm_pprev_share =

&tmp->vm_next_share;

mpnt->vm_next_share = tmp;

tmp->vm_pprev_share = &mpnt->vm_next_share;

spin_unlock(&inode->i_mapping->i_shared_lock);

}

/* Copy the pages, but defer checking for errors */

retval = copy_page_range(mm, current->mm, tmp);

if (!retval && tmp->vm_ops && tmp->vm_ops->open)

tmp->vm_ops->open(tmp);

/*

* Link in the new vma even if an error occurred,

* so that exit_mmap() can clean up the mess.

*/

*pprev = tmp;

pprev = &tmp->vm_next;

if (retval)

goto fail_nomem;

}

retval = 0;

if (mm->map_count >= AVL_MIN_MAP_COUNT)

build_mmap_avl(mm);

fail_nomem:

flush_tlb_mm(current->mm);

return retval;

}

spinlock_t mmlist_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED;

#define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))

#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))

staticstruct mm_struct * mm_init(struct mm_struct * mm)

{

atomic_set(&mm->mm_users, 1);

atomic_set(&mm->mm_count, 1);

init_MUTEX(&mm->mmap_sem);

mm->page_table_lock = SPIN_LOCK_UNLOCKED;

mm->pgd = pgd_alloc();

if (mm->pgd)

return mm;

free_mm(mm);

return NULL;

}

/*

* Allocate and initialize an mm_struct.

*/

struct mm_struct * mm_alloc(void)

{

struct mm_struct * mm;

mm = allocate_mm();

if (mm) {

memset(mm, 0, sizeof(*mm));

return mm_init(mm);

}

return NULL;

}

/*

* Called when the last reference to the mm

* is dropped: either by a lazy thread or by

* mmput. Free the page directory and the mm.

*/

inline void __mmdrop(struct mm_struct *mm)

{

if (mm == &init_mm) BUG();

pgd_free(mm->pgd);

destroy_context(mm);

free_mm(mm);

}

/*

* Decrement the use count and release all resources for an mm.

*/

void mmput(struct mm_struct *mm)

{

if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {

list_del(&mm->mmlist);

spin_unlock(&mmlist_lock);

exit_mmap(mm);

mmdrop(mm);

}

}

void mm_release(void)

{

struct task_struct *tsk = current;

/* notify parent sleeping on vfork() */

if (tsk->flags & PF_VFORK) {

tsk->flags &= ~PF_VFORK;

up(tsk->p_opptr->vfork_sem);

}

}

 

这部分代码为内存管理部分,代码中的注释向我们大致说明了本段代码的功能。

Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中。每一个进程都会有自己独立的mm_struct,这样每一个进程都会有自己独立的地址空间,这样才能互不干扰。在地址空间中,mmap为地址空间的内存区域(用vm_area_struct结构来表示)链表,表示起来更加方便。mm_struct的结构描述了进程的用户空间的结构,定义了用户空间的段分布:数据段,代码段,堆栈段。其中pgd_t是该进程用户空间地址映射到物理地址时使用vm_area_struct是进程用户空间已映射到物理空间的虚拟地址区间,定义在/include/linux/mm.h。mmap是该空间区块组成的链表。vm_flag是描述对虚拟区间的操作的标志。

 

 

staticint copy_mm(unsigned long clone_flags, struct task_struct * tsk)

{

struct mm_struct * mm, *oldmm;

int retval;

tsk->min_flt = tsk->maj_flt = 0;

tsk->cmin_flt = tsk->cmaj_flt = 0;

tsk->nswap = tsk->cnswap = 0;

tsk->mm = NULL;

tsk->active_mm = NULL;

/*

* Are we cloning a kernel thread?

*

* We need to steal a active VM for that..

*/

oldmm = current->mm;

if (!oldmm)

return0;

if (clone_flags & CLONE_VM) {

atomic_inc(&oldmm->mm_users);

mm = oldmm;

goto good_mm;

}

retval = -ENOMEM;

mm = allocate_mm();

if (!mm)

goto fail_nomem;

/* Copy the current MM stuff.. */

memcpy(mm, oldmm, sizeof(*mm));

if (!mm_init(mm))

goto fail_nomem;

down(&oldmm->mmap_sem);

retval = dup_mmap(mm);

up(&oldmm->mmap_sem);

/*

* Add it to the mmlist after the parent.

*

* Doing it this way means that we can order

* the list, and fork() won"t mess up the

* ordering significantly.

*/

spin_lock(&mmlist_lock);

list_add(&mm->mmlist, &oldmm->mmlist);

spin_unlock(&mmlist_lock);

if (retval)

goto free_pt;

/*

* child gets a private LDT (if there was an LDT in the parent)

*/

copy_segments(tsk, mm);

if (init_new_context(tsk,mm))

goto free_pt;

good_mm:

tsk->mm = mm;

tsk->active_mm = mm;

return0;

free_pt:

mmput(mm);

fail_nomem:

return retval;

}

static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)

{

struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);

/* We don"t need to lock fs - think why ;-) */

if (fs) {

atomic_set(&fs->count, 1);

fs->lock = RW_LOCK_UNLOCKED;

fs->umask = old->umask;

read_lock(&old->lock);

fs->rootmnt = mntget(old->rootmnt);

fs->root = dget(old->root);

fs->pwdmnt = mntget(old->pwdmnt);

fs->pwd = dget(old->pwd);

if (old->altroot) {

fs->altrootmnt = mntget(old->altrootmnt);

fs->altroot = dget(old->altroot);

} else {

fs->altrootmnt = NULL;

fs->altroot = NULL;

}

read_unlock(&old->lock);

}

return fs;

}

struct fs_struct *copy_fs_struct(struct fs_struct *old)

{

return __copy_fs_struct(old);

}

static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)

{

if (clone_flags & CLONE_FS) {

atomic_inc(&current->fs->count);

return0;

}

tsk->fs = __copy_fs_struct(current->fs);

if (!tsk->fs)

return -1;

return0;

}

staticint count_open_files(struct files_struct *files, int size)

{

int i;

/* Find the last open fd */

for (i = size/(8*sizeof(long)); i > 0; ) {

if (files->open_fds->fds_bits[--i])

break;

}

i = (i+1) * 8 * sizeof(long);

return i;

}

staticint copy_files(unsigned long clone_flags, struct task_struct * tsk)

{

struct files_struct *oldf, *newf;

struct file **old_fds, **new_fds;

int open_files, nfds, size, i, error = 0;

/*

* A background process may not have any files ...

*/

oldf = current->files;

if (!oldf)

gotoout;

if (clone_flags & CLONE_FILES) {

atomic_inc(&oldf->count);

gotoout;

}

tsk->files = NULL;

error = -ENOMEM;

newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);

if (!newf)

gotoout;

atomic_set(&newf->count, 1);

newf->file_lock = RW_LOCK_UNLOCKED;

newf->next_fd = 0;

newf->max_fds = NR_OPEN_DEFAULT;

newf->max_fdset = __FD_SETSIZE;

newf->close_on_exec = &newf->close_on_exec_init;

newf->open_fds = &newf->open_fds_init;

newf->fd = &newf->fd_array[0];

/* We don"t yet have the oldf readlock, but even if the old

fdset gets grown now, we"ll only copy up to "size" fds */

size = oldf->max_fdset;

if (size > __FD_SETSIZE) {

newf->max_fdset = 0;

write_lock(&newf->file_lock);

error = expand_fdset(newf, size);

write_unlock(&newf->file_lock);

if (error)

goto out_release;

}

read_lock(&oldf->file_lock);

open_files = count_open_files(oldf, size);

/*

* Check whether we need to allocate a larger fd array.

* Note: we"re not a clone task, so the open count won"t

* change.

*/

nfds = NR_OPEN_DEFAULT;

if (open_files > nfds) {

read_unlock(&oldf->file_lock);

newf->max_fds = 0;

write_lock(&newf->file_lock);

error = expand_fd_array(newf, open_files);

write_unlock(&newf->file_lock);

if (error)

goto out_release;

nfds = newf->max_fds;

read_lock(&oldf->file_lock);

}

old_fds = oldf->fd;

new_fds = newf->fd;

memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);

memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);

for (i = open_files; i != 0; i--) {

struct file *f = *old_fds++;

if (f)

get_file(f);

*new_fds++ = f;

}

read_unlock(&oldf->file_lock);

/* compute the remainder to be cleared */

size = (newf->max_fds - open_files) * sizeof(struct file *);

/* This is long word aligned thus could use a optimized version */

memset(new_fds, 0, size);

if (newf->max_fdset > open_files) {

int left = (newf->max_fdset-open_files)/8;

int start = open_files / (8 * sizeof(unsigned long));

memset(&newf->open_fds->fds_bits[start], 0, left);

memset(&newf->close_on_exec->fds_bits[start], 0, left);

}

tsk->files = newf;

error = 0;

out:

return error;

out_release:

free_fdset (newf->close_on_exec, newf->max_fdset);

free_fdset (newf->open_fds, newf->max_fdset);

kmem_cache_free(files_cachep, newf);

gotoout;

}

static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)

{

struct signal_struct *sig;

if (clone_flags & CLONE_SIGHAND) {

atomic_inc(&current->sig->count);

return0;

}

sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);

tsk->sig = sig;

if (!sig)

return -1;

spin_lock_init(&sig->siglock);

atomic_set(&sig->count, 1);

memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action));

return0;

}

static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)

{

unsigned long new_flags = p->flags;

new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU | PF_VFORK);

new_flags |= PF_FORKNOEXEC;

if (!(clone_flags & CLONE_PTRACE))

p->ptrace = 0;

if (clone_flags & CLONE_VFORK)

new_flags |= PF_VFORK;

p->flags = new_flags;

}

 

父进程中在调用fork()派生新进程,实际上相当于创建了进程的一个拷贝;复制出来的子进程有自己的 task_struct结构和系统空间堆栈,但与父进程共享其他所有的资源。Linux为此提供了两个系统调用,一个是fork(),另一个是clone()。我们现在主要讨论fork()。fork()是全部复制,父进程所需的资源全部通过数据结构的复制传递给子进程,而完成这一操作的函数定义就是上方所写的代码段。调用fork时,内核会在copy_mm函数中处理子进程的mm_struct,在copy_files函数中处理拷贝父进程打开的文件的相关事宜,在copy_fs中记录进程所在文件系统的根目录和当前目录信息, copy_sighand中复制进程对信号的处理方式。

/*

* Ok, this is the main fork-routine. It copies the system process

* information (task[nr]) and sets up the necessary registers. It also

* copies the data segment in its entirety. The "stack_start" and

* "stack_top" arguments are simply passed along to the platform

* specific copy_thread() routine. Most platforms ignore stack_top.

* For an example that"s using stack_top, see

* arch/ia64/kernel/process.c.

*/

int do_fork(unsigned long clone_flags, unsigned long stack_start,struct pt_regs *regs, unsigned long stack_size)

{

int retval = -ENOMEM;

struct task_struct *p;

DECLARE_MUTEX_LOCKED(sem);

if (clone_flags & CLONE_PID) {

/* This is only allowed from the boot up thread */

if (current->pid)

return -EPERM;

}

current->vfork_sem = &sem;

p = alloc_task_struct();

if (!p)

goto fork_out;

*p = *current;

retval = -EAGAIN;

if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur)

goto bad_fork_free;

atomic_inc(&p->user->__count);

atomic_inc(&p->user->processes);

/*

* Counter increases are protected by

* the kernel lock so nr_threads can"t

* increase under us (but it may decrease).

*/

if (nr_threads >= max_threads)

goto bad_fork_cleanup_count;

get_exec_domain(p->exec_domain);

if (p->binfmt && p->binfmt->module)

__MOD_INC_USE_COUNT(p->binfmt->module);

p->did_exec = 0;

p->swappable = 0;

p->state = TASK_UNINTERRUPTIBLE;

copy_flags(clone_flags, p);

p->pid = get_pid(clone_flags);

p->run_list.next = NULL;

p->run_list.prev = NULL;

if ((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT)) {

p->p_opptr = current;

if (!(p->ptrace & PT_PTRACED))

p->p_pptr = current;

}

p->p_cptr = NULL;

init_waitqueue_head(&p->wait_chldexit);

p->vfork_sem = NULL;

spin_lock_init(&p->alloc_lock);

p->sigpending = 0;

init_sigpending(&p->pending);

p->it_real_value = p->it_virt_value = p->it_prof_value = 0;

p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;

init_timer(&p->real_timer);

p->real_timer.data = (unsigned long) p;

p->leader = 0; /* session leadership doesn"t inherit */

p->tty_old_pgrp = 0;

p->times.tms_utime = p->times.tms_stime = 0;

p->times.tms_cutime = p->times.tms_cstime = 0;

#ifdef CONFIG_SMP

{

int i;

p->has_cpu = 0;

p->processor = current->processor;

/* ?? should we just memset this ?? */

for(i = 0; i < smp_num_cpus; i++)

p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0;

spin_lock_init(&p->sigmask_lock);

}

#endif

p->lock_depth = -1; /* -1 = no lock */

p->start_time = jiffies;

retval = -ENOMEM;

/* copy all the process information */

if (copy_files(clone_flags, p))

goto bad_fork_cleanup;

if (copy_fs(clone_flags, p))

goto bad_fork_cleanup_files;

if (copy_sighand(clone_flags, p))

goto bad_fork_cleanup_fs;

if (copy_mm(clone_flags, p))

goto bad_fork_cleanup_sighand;

retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);

if (retval)

goto bad_fork_cleanup_sighand;

p->semundo = NULL;

/* Our parent execution domain becomes current domain

These must match for thread signalling to apply */

p->parent_exec_id = p->self_exec_id;

/* ok, now we should be set up.. */

p->swappable = 1;

p->exit_signal = clone_flags & CSIGNAL;

p->pdeath_signal = 0;

/*

* "share" dynamic priority between parent and child, thus the

* total amount of dynamic priorities in the system doesnt change,

* more scheduling fairness. This is only important in the first

* timeslice, on the long run the scheduling behaviour is unchanged.

*/

p->counter = (current->counter + 1) >> 1;

current->counter >>= 1;

if (!current->counter)

current->need_resched = 1;

/*

* Ok, add it to the run-queues and make it

* visible to the rest of the system.

*

* Let it rip!

*/

retval = p->pid;

p->tgid = retval;

INIT_LIST_HEAD(&p->thread_group);

write_lock_irq(&tasklist_lock);

if (clone_flags & CLONE_THREAD) {

p->tgid = current->tgid;

list_add(&p->thread_group, &current->thread_group);

}

SET_LINKS(p);

hash_pid(p);

nr_threads++;

write_unlock_irq(&tasklist_lock);

if (p->ptrace & PT_PTRACED)

send_sig(SIGSTOP, p, 1);

wake_up_process(p); /* do this last */

++total_forks;

fork_out:

if ((clone_flags & CLONE_VFORK) && (retval > 0))

down(&sem);

return retval;

bad_fork_cleanup_sighand:

exit_sighand(p);

bad_fork_cleanup_fs:

exit_fs(p); /* blocking */

bad_fork_cleanup_files:

exit_files(p); /* blocking */

bad_fork_cleanup:

put_exec_domain(p->exec_domain);

if (p->binfmt && p->binfmt->module)

__MOD_DEC_USE_COUNT(p->binfmt->module);

bad_fork_cleanup_count:

atomic_dec(&p->user->processes);

free_uid(p->user);

bad_fork_free:

free_task_struct(p);

goto fork_out;

}

 

如开头注释第一句所说,这部分代码是fork.c中最主要的函数。

do_fork首先进行一些参数及权限的检查,仅允许从线程启动。之后进行内存的分配,复制父进程的task_struct。判断进程数量,将从父进程中继承的task_struct初始化,获取新的pid,分配CPU,解锁后设定运行时间。将子进程的pid放入pidhash表中,就可以唤醒子进程了。代码中间部分有设置进程判断,若发现非法进程会直接清理掉。清理函数在代码尾部定义。

 

/* SLAB cache for signal_struct structures (tsk->sig) */

kmem_cache_t *sigact_cachep;

/* SLAB cache for files_struct structures (tsk->files) */

kmem_cache_t *files_cachep;

/* SLAB cache for fs_struct structures (tsk->fs) */

kmem_cache_t *fs_cachep;

/* SLAB cache for vm_area_struct structures */

kmem_cache_t *vm_area_cachep;

/* SLAB cache for mm_struct structures (tsk->mm) */

kmem_cache_t *mm_cachep;

void __init proc_caches_init(void)

{

sigact_cachep = kmem_cache_create("signal_act",

sizeof(struct signal_struct), 0,

SLAB_HWCACHE_ALIGN, NULL, NULL);

if (!sigact_cachep)

panic("Cannot create signal action SLAB cache");

files_cachep = kmem_cache_create("files_cache",

sizeof(struct files_struct), 0,

SLAB_HWCACHE_ALIGN, NULL, NULL);

if (!files_cachep)

panic("Cannot create files SLAB cache");

fs_cachep = kmem_cache_create("fs_cache",

sizeof(struct fs_struct), 0,

SLAB_HWCACHE_ALIGN, NULL, NULL);

if (!fs_cachep)

panic("Cannot create fs_struct SLAB cache");

vm_area_cachep = kmem_cache_create("vm_area_struct",

sizeof(struct vm_area_struct), 0,

SLAB_HWCACHE_ALIGN, NULL, NULL);

if(!vm_area_cachep)

panic("vma_init: Cannot alloc vm_area_struct SLAB cache");

mm_cachep = kmem_cache_create("mm_struct",

sizeof(struct mm_struct), 0,

SLAB_HWCACHE_ALIGN, NULL, NULL);

if(!mm_cachep)

panic("vma_init: Cannot alloc mm_struct SLAB cache");

}

 

最后这部分代码作用是处理进程的缓存,为proc文件系统创建高速缓冲。

 

 

从文件开头的宏定义,到等待队列的处理,到线程数的安全处理,到pid的分配,到进程的内存管理,到父进程复制出子进程。fork()函数中对进程的创建大致是以上步骤。主要在于copy部分对task_struct复制和复制后的初始化。

 

以上是 linux2.4.0版本内核代码fork.c浅显分析 的全部内容, 来源链接: utcz.com/z/519672.html

回到顶部