为什么Netty的FastThreadLocal速度快

性能测试
ThreadLocal主要被用在多线程环境下,方便的获取当前线程的数据,使用者无需关心多线程问题,方便使用;为了能说明问题,分别对两个场景进行测试,分别是:多个线程操作同一个ThreadLocal,单线程下的多个ThreadLocal,下面分别测试:
1.多个线程操作同一个ThreadLocal
分别对ThreadLocal和FastThreadLocal使用测试代码,部分代码如下:
public static void test2() throws Exception {		CountDownLatch cdl = new CountDownLatch(10000);
		ThreadLocal<String> threadLocal = new ThreadLocal<String>();
		long starTime = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
			new Thread(new Runnable() {
				@Override
				public void run() {
					threadLocal.set(Thread.currentThread().getName());
for (int k = 0; k < 100000; k++) {
						threadLocal.get();
					}
					cdl.countDown();
				}
			}, "Thread" + (i + 1)).start();
		}
		cdl.await();
		System.out.println(System.currentTimeMillis() - starTime + "ms");
	}
复制代码
以上代码创建了10000个线程,同时往ThreadLocal设置,然后get十万次,然后通过CountDownLatch来计算总的时间消耗,运行结果为:1000ms左右; 下面再对FastThreadLocal进行测试,代码类似:
public static void test2() throws Exception {		CountDownLatch cdl = new CountDownLatch(10000);
		FastThreadLocal<String> threadLocal = new FastThreadLocal<String>();
		long starTime = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
			new FastThreadLocalThread(new Runnable() {
				@Override
				public void run() {
					threadLocal.set(Thread.currentThread().getName());
for (int k = 0; k < 100000; k++) {
						threadLocal.get();
					}
					cdl.countDown();
				}
			}, "Thread" + (i + 1)).start();
		}
		cdl.await();
		System.out.println(System.currentTimeMillis() - starTime);
	}
复制代码
运行之后结果为:1000ms左右;可以发现在这种情况下两种类型的ThreadLocal在性能上并没有什么差距,下面对第二种情况进行测试;
2.单线程下的多个ThreadLocal
分别对ThreadLocal和FastThreadLocal使用测试代码,部分代码如下:
	public static void test1() throws InterruptedException {		int size = 10000;
		ThreadLocal<String> tls[] = new ThreadLocal[size];
for (int i = 0; i < size; i++) {
			tls[i] = new ThreadLocal<String>();
		}
		new Thread(new Runnable() {
			@Override
			public void run() {
				long starTime = System.currentTimeMillis();
for (int i = 0; i < size; i++) {
					tls[i].set("value" + i);
				}
for (int i = 0; i < size; i++) {
for (int k = 0; k < 100000; k++) {
						tls[i].get();
					}
				}
				System.out.println(System.currentTimeMillis() - starTime + "ms");
			}
		}).start();
	}
复制代码
以上代码创建了10000个ThreadLocal,然后使用同一个线程对ThreadLocal设值,同时get十万次,运行结果:2000ms左右; 下面再对FastThreadLocal进行测试,代码类似:
	public static void test1() {		int size = 10000;
		FastThreadLocal<String> tls[] = new FastThreadLocal[size];
for (int i = 0; i < size; i++) {
			tls[i] = new FastThreadLocal<String>();
		}
		new FastThreadLocalThread(new Runnable() {
			@Override
			public void run() {
				long starTime = System.currentTimeMillis();
for (int i = 0; i < size; i++) {
					tls[i].set("value" + i);
				}
for (int i = 0; i < size; i++) {
for (int k = 0; k < 100000; k++) {
						tls[i].get();
					}
				}
				System.out.println(System.currentTimeMillis() - starTime + "ms");
			}
		}).start();
	}
复制代码
运行结果:30ms左右;可以发现性能达到两个数量级的差距,当然这是在大量访问次数的情况下才有的效果;下面重点分析一下ThreadLocal的机制,以及FastThreadLocal为什么比ThreadLocal更快;
ThreadLocal的机制
因为我们常用的就是set和get方法,分别看一下对应的源码:
    public void set(T value) {        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
if (map != null)
            map.set(this, value);
else
            createMap(t, value);
    }
    ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
    }
复制代码
以上代码大致意思:首先获取当前线程,然后获取当前线程中存储的threadLocals变量,此变量其实就是ThreadLocalMap,最后看此ThreadLocalMap是否为空,为空就创建一个新的Map,不为空则以当前的ThreadLocal为key,存储当前value;可以进一步看一下ThreadLocalMap中的set方法:
private void set(ThreadLocal<?> key, Object value) {            // We don"t use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();
                if (k == key) {
                    e.value = value;
                    return;
                }
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }
            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }
复制代码
大致意思:ThreadLocalMap内部使用一个数组来保存数据,类似HashMap;每个ThreadLocal在初始化的时候会分配一个threadLocalHashCode,然后和数组的长度进行取模操作,所以就会出现hash冲突的情况,在HashMap中处理冲突是使用数组+链表的方式,而在ThreadLocalMap中,可以看到直接使用nextIndex,进行遍历操作,明显性能更差;下面再看一下get方法:
    public T get() {        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
return result;
            }
        }
returnsetInitialValue();
    }
复制代码
同样是先获取当前线程,然后获取当前线程中的ThreadLocalMap,然后以当前的ThreadLocal为key,到ThreadLocalMap中获取value:
        private Entry getEntry(ThreadLocal<?> key) {            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
        }
         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;
while (e != null) {
                ThreadLocal<?> k = e.get();
if (k == key)
return e;
if (k == null)
                    expungeStaleEntry(i);
else
                    i = nextIndex(i, len);
                e = tab[i];
            }
return null;
        }
复制代码
同set方式,通过取模获取数组下标,如果没有冲突直接返回数据,否则同样出现遍历的情况;所以通过分析可以大致知道以下几个问题: 1.ThreadLocalMap是存放在Thread下面的,ThreadLocal作为key,所以多个线程操作同一个ThreadLocal其实就是在每个线程的ThreadLocalMap中插入的一条记录,不存在任何冲突问题; 2.ThreadLocalMap在解决冲突时,通过遍历的方式,非常影响性能; 3.FastThreadLocal通过其他方式解决冲突的问题,达到性能的优化; 下面继续来看一下FastThreadLocal是通过何种方式达到性能的优化。
为什么Netty的FastThreadLocal速度快
Netty中分别提供了FastThreadLocal和FastThreadLocalThread两个类,FastThreadLocalThread继承于Thread,下面同样对常用的set和get方法来进行源码分析:
   public final void set(V value) {if (value != InternalThreadLocalMap.UNSET) {
set(InternalThreadLocalMap.get(), value);
        } else {
            remove();
        }
    }
    public final void set(InternalThreadLocalMap threadLocalMap, V value) {
if (value != InternalThreadLocalMap.UNSET) {
if (threadLocalMap.setIndexedVariable(index, value)) {
                addToVariablesToRemove(threadLocalMap, this);
            }
        } else {
            remove(threadLocalMap);
        }
    }
复制代码
此处首先对value进行判定是否为InternalThreadLocalMap.UNSET,然后同样使用了一个InternalThreadLocalMap用来存放数据:
    public static InternalThreadLocalMap get() {        Thread thread = Thread.currentThread();
if (thread instanceof FastThreadLocalThread) {
return fastGet((FastThreadLocalThread) thread);
        } else {
return slowGet();
        }
    }
    private static InternalThreadLocalMap fastGet(FastThreadLocalThread thread) {
        InternalThreadLocalMap threadLocalMap = thread.threadLocalMap();
if (threadLocalMap == null) {
            thread.setThreadLocalMap(threadLocalMap = new InternalThreadLocalMap());
        }
return threadLocalMap;
    }
复制代码
可以发现InternalThreadLocalMap同样存放在FastThreadLocalThread中,不同在于,不是使用ThreadLocal对应的hash值取模获取位置,而是直接使用FastThreadLocal的index属性,index在实例化时被初始化:
    private final int index;    public FastThreadLocal() {
        index = InternalThreadLocalMap.nextVariableIndex();
    }
复制代码
再进入nextVariableIndex方法中:
    static final AtomicInteger nextIndex = new AtomicInteger();    public static int nextVariableIndex() {
        int index = nextIndex.getAndIncrement();
if (index < 0) {
            nextIndex.decrementAndGet();
            throw new IllegalStateException("too many thread-local indexed variables");
        }
return index;
    }
复制代码
在InternalThreadLocalMap中存在一个静态的nextIndex对象,用来生成数组下标,因为是静态的,所以每个FastThreadLocal生成的index是连续的,再看一下InternalThreadLocalMap中是如何setIndexedVariable的:
    public boolean setIndexedVariable(int index, Object value) {        Object[] lookup = indexedVariables;
if (index < lookup.length) {
            Object oldValue = lookup[index];
            lookup[index] = value;
return oldValue == UNSET;
        } else {
            expandIndexedVariableTableAndSet(index, value);
returntrue;
        }
    }
复制代码
indexedVariables是一个对象数组,用来存放value;直接使用index作为数组下标进行存放;如果index大于数组长度,进行扩容;get方法直接通过FastThreadLocal中的index进行快速读取:
   public final V get(InternalThreadLocalMap threadLocalMap) {        Object v = threadLocalMap.indexedVariable(index);
if (v != InternalThreadLocalMap.UNSET) {
return (V) v;
        }
return initialize(threadLocalMap);
    }
    public Object indexedVariable(int index) {
        Object[] lookup = indexedVariables;
return index < lookup.length? lookup[index] : UNSET;
    }
复制代码
直接通过下标进行读取,速度非常快;但是这样会有一个问题,可能会造成空间的浪费;
总结
通过以上分析我们可以知道在有大量的ThreadLocal进行读写操作的时候,才可能会遇到性能问题;另外FastThreadLocal通过空间换取时间的方式来达到O(1)读取数据;还有一个疑问就是内部为什么不直接使用HashMap(数组+黑红树)来代替ThreadLocalMap。
以上是 为什么Netty的FastThreadLocal速度快 的全部内容, 来源链接: utcz.com/z/516050.html



