Elasticsearch系列常见搜索方式与聚合分析

编程

概要

本篇主要介绍常见的6种搜索方式、聚合分析语法,基本是上机实战,可以和关系型数据库作对比,如果之前了解关系型数据库,那本篇只需要了解搜索和聚合的语法规则就可以了。

搜索响应报文

以上篇建立的music索引为例,我们先看看搜索结果的属性都有哪些

{

"took": 1,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 1,

"max_score": 1,

"hits": [

{

"_index": "music",

"_type": "children",

"_id": "1",

"_score": 1,

"_source": {

"name": "gymbo",

"content": "I hava a friend who loves smile, gymbo is his name",

"length": "75"

}

}

]

}

}

主要的参数说明如下:

  • took:耗费时间,单位是毫秒。
  • timed_out:是否超时,true有超时,false没超时。
  • _shards:数据拆成了5个分片,所以对于搜索请求,会到所有的primary shard查询,或是它的某个replica shard。
  • hits.total:符合查询条件的数量,1个document。
  • hits.max_score:score是符合条件的document评分的最大值。
  • hits.hits.score: 这个层级的score表示当前document对search条件的相关度的匹配分数,越相关,就越匹配,分数也高。
  • hits.hits:包含了匹配搜索条件的document的详细数据。

搜索方式

query string search

搜索所有数据

GET /music/children/_search

带条件搜索

GET /music/children/_search?q=name:gymbo&sort=length:asc

此搜索语法的特点是所有的条件、排序全部用http请求的query string来附带的。这种语法一般是演示或curl命令行简单查询时使用,不适用构建复杂的查询条件,生产已经很少用了。

Query DSL

DSL:Domain Specified Language特定领域语言

http request body:请求体格式,body用json构建语法,可以构建各种复杂的语法。

查询所有数据

GET /music/children/_search

{

"query":{

"match_all": {}

}

}

带条件+排序:

GET /music/children/_search

{

"query":{

"match": {

"name": "gymbo"

}

},

"sort":[{"length":"desc"}]

}

分页查询,size从0开始,下面的命令取第10条到第19条数据

GET /music/children/_search

{

"query": {

"match_all":{}

},

"from": 10,

"size": 10

}

指定要查询出来的属性

GET /music/children/_search

{

"query": {

"match_all" : {}

},

"_source": ["name","content"]

}

query filter

带多个条件过滤:歌曲名称是gymbo,并且时长在65到80秒之间的

GET /music/children/_search

{

"query":{

"bool":{

"must": [

{"match": {

"name": "gymbo"

}}

],

"filter": {"range": {

"length": {

"gte": 65,

"lte": 80

}

}}

}

}

}

全文检索

GET /music/children/_search

{

"query":{

"match": {

"content":"friend smile"

}

}

}

搜索的结果是按相关度分数来排序的,搜索条件中的content field,在新增document时已经建立倒排索引,然后按匹配度最高的来排序,全文索引的原理。

短语检索

GET /music/children/_search

{

"query":{

"match_phrase": {

"content":"friend smile"

}

}

}

全文检索match会拆词,大小写不敏感,然后去倒排索引里去匹配,phrase search不分词,大小写敏感,要求搜索串完全一样才匹配。

高亮检索

GET /music/children/_search

{

"query":{

"match_phrase":{

"content":"friend smile"

}

},

"highlight": {

"fields": {

"content":{}

}

}

}

匹配的关键词会高亮显示,高亮的内容用<em>标签达到标记效果。

聚合分析

聚合分析类似于关系型数据的分组统计,并且用的语法名称很多都与mysql类似,在这里,能看到很多熟悉的方法。

单field分组统计

需求:统计每种语言下的歌曲数量。

size为0表示不显示符合条件的document记录,只显示统计信息,不写的话默认值是10

GET /music/children/_search

{

"size": 0,

"aggs": {

"group_by_lang": {

"terms": {

"field": "language"

}

}

}

}

响应结果:

{

"took": 3,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

},

"hits": {

"total": 1,

"max_score": 0,

"hits": []

},

"aggregations": {

"group_by_lang": {

"doc_count_error_upper_bound": 0,

"sum_other_doc_count": 0,

"buckets": [

{

"key": "english",

"doc_count": 1

}

]

}

}

}

如果聚合查询时出现如下错误提示:

"root_cause": [

{

"type": "illegal_argument_exception",

"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [language] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."

}

]

需要将用于分组的字段的fielddata属性设置为true

PUT /music/_mapping/children

{

"properties": {

"language": {

"type": "text",

"fielddata": true

}

}

}

带查询条件的分组统计

需求:对歌词中出现"friend"的歌曲,计算每个语种下的歌曲数量

GET /music/children/_search

{

"size": 0,

"query": {

"match": {

"content": "friend"

}

},

"aggs": {

"all_languages": {

"terms": {

"field": "language"

}

}

}

}

求平均值

需求:计算每个语种下的歌曲,平均时长是多少

GET /music/children/_search

{

"size": 0,

"aggs": {

"group_by_languages": {

"terms": {

"field": "language"

},

"aggs": {

"avg_length": {

"avg": {

"field": "length"

}

}

}

}

}

}

分组后排序

需求:计算每个语种下的歌曲,平均时长是多少,并按平均时长降序排序

GET /music/children/_search

{

"size": 0,

"aggs": {

"group_by_languages": {

"terms": {

"field": "language",

"order": {

"avg_length": "desc"

}

},

"aggs": {

"avg_length": {

"avg": {

"field": "length"

}

}

}

}

}

}

嵌套查询,区间分组+分组统计+平均值

需求:按照指定的时长范围区间进行分组,然后在每组内再按照语种进行分组,最后再计算时长的平均值

GET /music/children/_search

{

"size": 0,

"aggs": {

"group_by_price": {

"range": {

"field": "length",

"ranges": [

{

"from": 0,

"to": 60

},

{

"from": 60,

"to": 120

},

{

"from": 120,

"to": 180

}

]

},

"aggs": {

"group_by_languages": {

"terms": {

"field": "language"

},

"aggs": {

"average_length": {

"avg": {

"field": "length"

}

}

}

}

}

}

}

}

批量查询

上面的示例请求,都是单个单个发的,Elasticsearch还有一种语法,可以合并多个请求进行批量查询,这样可以减少每个请求单独的网络开销,最基础的语法示例如下:

GET /_mget

{

"docs": [

{

"_index" : "music",

"_type" : "children",

"_id" : 1

},

{

"_index" : "music",

"_type" : "children",

"_id" : 2

}

]

}

mget下面的docs参数是一个数组,数组里面每个元素都可以定义一个文档的_index、_type和_id元数据,_index可相同也可不相同,也可以定义_source元数据指定想要的field。

响应的示例:

{

"docs": [

{

"_index": "music",

"_type": "children",

"_id": "1",

"_version": 4,

"found": true,

"_source": {

"name": "gymbo",

"content": "I hava a friend who loves smile, gymbo is his name",

"language": "english",

"length": "75",

"likes": 0

}

},

{

"_index": "music",

"_type": "children",

"_id": "2",

"_version": 13,

"found": true,

"_source": {

"name": "wake me, shark me",

"content": "don"t let me sleep too late, gonna get up brightly early in the morning",

"language": "english",

"length": "55",

"likes": 9

}

}

]

}

响应同样是一个docs数组,数组长度与请求时保持一致,如果有文档不存在、未搜索到或者别的原因导致报错,不影响整体的结果,mget的http响应码仍然是200,每个文档的搜索都是独立的。

如果批量查询的文档是在同一个index下面,可以将_index元数据(_type元数据我也顺便移走)移到请求行中:

GET /music/children/_mget

{

"docs": [

{

"_id" : 1

},

{

"_id" : 2

}

]

}

或者是直接使用更简单的ids数组:

GET /music/children/_mget

{

"ids":[1,2]

}

查询结果是一样的。

mget的重要性

mget是非常重要的,在进行查询的时候,如果一次性要查询多条数据,那么一定要用batch批量操作的api,尽可能减少网络开销次数,可能可以将性能提升数倍,甚至数十倍。

小结

本篇介绍了最常用的搜索、批量查询和聚合场景的写法,包含分组统计,平均值,排序,区间分组。这是最基本的套路,基本包含了我们常见的需求,熟悉mysql的话,掌握起来非常快,熟悉一下Restful的语法,基本就OK了。

专注Java高并发、分布式架构,更多技术干货分享与心得,请关注公众号:Java架构社区

以上是 Elasticsearch系列常见搜索方式与聚合分析 的全部内容, 来源链接: utcz.com/z/511067.html

回到顶部