linux互斥锁和条件变量

coding

为什么有条件变量?

请参看一个线程等待某种事件发生

注意:本文是linux c版本的条件变量和互斥锁(mutex),不是C++的。

<font color=red>mutex : mutual exclusion(相互排斥)</font>

1,互斥锁的初始化,有以下2种方式。

  • 调用方法的初始化:互斥锁是用malloc动态分配,或者分配在内存共享区的时候使用。
  • 不调用方法的初始化:静态分配的时候使用。
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

  • 返回值:成功0;失败errno

2,互斥锁的销毁

int pthread_mutex_destroy(pthread_mutex_t *mutex);

  • 返回值:成功0;失败errno
int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

3,加锁和解锁

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

  • pthread_mutex_lock:加锁。如果是没有加锁的状态,则加锁并返回不阻塞。如果是已经被加锁的状态,这阻塞在这里,并一直等待,直到解锁。
  • pthread_mutex_trylock:尝试去加锁。如果是没有加锁的状态,则加锁并返回不阻塞。果是已经被加锁的状态,则不阻塞,立即返回,返回值为EBUSY。

4,条件变量的2个函数

int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

int pthread_cond_signal(pthread_cond_t *cond);

  • pthread_cond_wait:

    • 调用此函数时点的处理:

      1,给互斥锁解锁。

      2,把调用此函数的线程投入睡眠,直到另外某个线程就本条件变量调用pthread_cond_signal。

    • 被唤醒后的处理:返回前重新给互斥锁加锁。

  • pthread_cond_signal:唤醒调用pthread_cond_wait函数的线程

条件变量通常用于生产者和消费者模式。

什么是生成者和消费者模式?

版本1:所有生产者线程是并行执行的,消费者线程是等待所有的生产者线性执行结束后,消费者线程才开始执行。

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define MAXITEM 100000000

#define MAXTHREAD 100

#define min(x,y) ( x>y?y:x )

int nitem;

struct {

pthread_mutex_t mutex;

int buf[MAXITEM];

int idx;

int val;

}shared = {

PTHREAD_MUTEX_INITIALIZER

};

void* produce(void*);

void* consume(void*);

int main(int argc, char** argv){

int i;

int nthreads;

int count[MAXTHREAD];

pthread_t tid_produce[MAXTHREAD], tid_consume;

if(argc != 3){

printf("arg error\n");

return 1;

}

nitem = min(MAXITEM,atoi(argv[1]));

nthreads = min(MAXTHREAD, atoi(argv[2]));

for(i = 0; i < nthreads; ++i){

count[i] = 0;

pthread_create(&tid_produce[i], NULL, produce, &count[i]);

}

for(i = 0; i < nthreads; ++i){

pthread_join(tid_produce[i], NULL);

printf("cout[%d] = %d\n", i, count[i]);

}

pthread_create(&tid_consume, NULL, consume, NULL);

pthread_join(tid_consume, NULL);

return 0;

}

void* produce(void* arg){

while(1){

pthread_mutex_lock(&shared.mutex);

if(shared.idx >= nitem){

pthread_mutex_unlock(&shared.mutex);

return NULL;

}

shared.buf[shared.idx] = shared.val;

shared.idx++;

shared.val++;

pthread_mutex_unlock(&shared.mutex);

*((int*)arg) +=1;

}

}

void* consume(void* arg){

int i;

for(i = 0; i < nitem; ++i){

if(shared.buf[i] != i){

printf("buf[%d] = %d\n", i, shared.buf[i]);

}

}

}

版本2:所有生产者线程和消费者线程都是并行执行的。<font color=red>这时会有个问题,就是消费者线程被先执行的情况下,生产者线程还没有生产数据,这时消费者线程就只能循环给互斥锁解锁又上锁。这成为轮转(spinning)或者轮询(polling),是一种多CPU时间的浪费。我们也可以睡眠很短的一段时间,但是不知道睡多久。这时,条件变量就登场了。</font>

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define MAXITEM 100000000

#define MAXTHREAD 100

#define min(x,y) ( x>y?y:x )

int nitem;

struct {

pthread_mutex_t mutex;

int buf[MAXITEM];

int idx;

int val;

}shared = {

PTHREAD_MUTEX_INITIALIZER

};

void* produce(void*);

void* consume(void*);

int main(int argc, char** argv){

int i;

int nthreads;

int count[MAXTHREAD];

pthread_t tid_produce[MAXTHREAD], tid_consume;

if(argc != 3){

printf("arg error\n");

return 1;

}

nitem = min(MAXITEM,atoi(argv[1]));

nthreads = min(MAXTHREAD, atoi(argv[2]));

for(i = 0; i < nthreads; ++i){

count[i] = 0;

pthread_create(&tid_produce[i], NULL, produce, &count[i]);

}

pthread_create(&tid_consume, NULL, consume, NULL);

for(i = 0; i < nthreads; ++i){

pthread_join(tid_produce[i], NULL);

printf("cout[%d] = %d\n", i, count[i]);

}

pthread_join(tid_consume, NULL);

return 0;

}

void* produce(void* arg){

while(1){

pthread_mutex_lock(&shared.mutex);

if(shared.idx >= nitem){

pthread_mutex_unlock(&shared.mutex);

return NULL;

}

shared.buf[shared.idx] = shared.val;

shared.idx++;

shared.val++;

pthread_mutex_unlock(&shared.mutex);

*((int*)arg) +=1;

}

}

void consume_wait(int i){

while(1){

pthread_mutex_lock(&shared.mutex);

if(i < shared.idx){

pthread_mutex_unlock(&shared.mutex);

return;

}

pthread_mutex_unlock(&shared.mutex);

}

}

void* consume(void* arg){

int i;

for(i = 0; i < nitem; ++i){

consume_wait(i);

if(shared.buf[i] != i){

printf("buf[%d] = %d\n", i, shared.buf[i]);

}

}

return NULL;

}

版本3:所有生产者线程和消费者线程都是并行执行的。解决版本2的轮询问题。使用条件变量。

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define MAXITEM 100000000

#define MAXTHREAD 100

#define min(x,y) ( x>y?y:x )

int nitem;

int buf[MAXITEM];

struct {

pthread_mutex_t mutex;

int idx;

int val;

} shared = {

PTHREAD_MUTEX_INITIALIZER

};

struct {

pthread_mutex_t mutex;

pthread_cond_t cond;

int nready;

} nready = {

PTHREAD_MUTEX_INITIALIZER,

PTHREAD_COND_INITIALIZER

};

void* produce(void*);

void* consume(void*);

int main(int argc, char** argv){

int i;

int nthreads;

int count[MAXTHREAD];

pthread_t tid_produce[MAXTHREAD], tid_consume;

if(argc != 3){

printf("arg error\n");

return 1;

}

nitem = min(MAXITEM,atoi(argv[1]));

nthreads = min(MAXTHREAD, atoi(argv[2]));

for(i = 0; i < nthreads; ++i){

count[i] = 0;

pthread_create(&tid_produce[i], NULL, produce, &count[i]);

}

pthread_create(&tid_consume, NULL, consume, NULL);

for(i = 0; i < nthreads; ++i){

pthread_join(tid_produce[i], NULL);

printf("cout[%d] = %d\n", i, count[i]);

}

pthread_join(tid_consume, NULL);

return 0;

}

void* produce(void* arg){

while(1){

pthread_mutex_lock(&shared.mutex);

if(shared.idx >= nitem){

pthread_mutex_unlock(&shared.mutex);

return NULL;

}

buf[shared.idx] = shared.val;

shared.idx++;

shared.val++;

pthread_mutex_unlock(&shared.mutex);

pthread_mutex_lock(&nready.mutex);

if(nready.nready == 0){

pthread_cond_signal(&nready.cond);//--------------②

}

nready.nready++;

pthread_mutex_unlock(&nready.mutex);//--------------③

*((int*) arg) += 1;

}

}

void* consume(void* arg){

int i;

for(i = 0; i < nitem; ++i){

pthread_mutex_lock(&nready.mutex);

while(nready.nready == 0){//--------------①

pthread_cond_wait(&nready.cond, &nready.mutex);

}

nready.nready--;

pthread_mutex_unlock(&nready.mutex);

if(buf[i] != i){

printf("buf[%d] = %d\n", i, buf[i]);

}

}

printf("buf[%d] = %d\n", nitem-1, buf[nitem-1]);

}

关于互斥锁和条件变量的最佳实践:

1,把要多个线程共享的数据定义和互斥锁定义在一个结构体里。

2,把条件变量,互斥锁,和临界条件定义在一个结构体里。

3,在①的地方,最后不要用if,理由是,pthread_cond_wait返回后,有可能另一个消费者线程把它消费掉了,所以要再次测试相应的条件成立与否,防止发生虚假的(spurious)唤醒。各种线程都应该试图最大限度减少这些虚假唤醒,但是仍有可能发生。

4,注意②处的代码pthread_cond_signal,设想一下最坏的情况,调用该函数后,另外一个等待的线程立即被唤醒,所以被唤醒的pthread_cond_wait函数要立即加锁,但是调用pthread_cond_signal函数的线程还没有执行到③处的pthread_mutex_unlock,所以被唤醒的线程又立即终止了。所以为了避免这种情况发生,把②处的代码pthread_cond_signal放在③处的下一行。

参考下面的伪代码:

int flag;    

pthread_mutex_lock(&nready.mutex);

int = nready.nready == 0);

nready.nready++;

pthread_mutex_unlock(&nready.mutex);

if(flag){

pthread_cond_signal(&nready.cond);

}

<font color="green">

c/c++ 学习互助QQ群:877684253

本人微信:xiaoshitou5854

</font>

以上是 linux互斥锁和条件变量 的全部内容, 来源链接: utcz.com/z/508779.html

回到顶部