记录一下雪花算法的原理and Java实现

java

1.基本了解:

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。

在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

 2.解释:
这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。
如:

0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000

比如下面那个 64 bit 的 long 型数字:

    第一个部分,是 1 个 bit:0,这个是无意义的。

    第二个部分是 41 个 bit:表示的是时间戳。

    第三个部分是 5 个 bit:表示的是机房 id,10001。

    第四个部分是 5 个 bit:表示的是机器 id,1 1001。

    第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

问题:1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

12 bit:这个是用来记录同一个毫秒内产生的不同 id。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。
这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 id 就出来了,类似于:
0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000

***********

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。
下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。
总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id

SnowFlake JAVA算法的实现代码如下:

public class IdWorker{

//下面两个每个5位,加起来就是10位的工作机器id

private long workerId; //工作id

private long datacenterId; //数据id

//12位的序列号

private long sequence;

public IdWorker(long workerId, long datacenterId, long sequence){

// sanity check for workerId

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));

}

System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

this.workerId = workerId;

this.datacenterId = datacenterId;

this.sequence = sequence;

}

//初始时间戳

private long twepoch = 1288834974657L;

//长度为5位

private long workerIdBits = 5L;

private long datacenterIdBits = 5L;

//最大值

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

//序列号id长度

private long sequenceBits = 12L;

//序列号最大值

private long sequenceMask = -1L ^ (-1L << sequenceBits);

//工作id需要左移的位数,12位

private long workerIdShift = sequenceBits;

//数据id需要左移位数 12+5=17位

private long datacenterIdShift = sequenceBits + workerIdBits;

//时间戳需要左移位数 12+5+5=22位

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

//上次时间戳,初始值为负数

private long lastTimestamp = -1L;

public long getWorkerId(){

return workerId;

}

public long getDatacenterId(){

return datacenterId;

}

public long getTimestamp(){

return System.currentTimeMillis();

}

//下一个ID生成算法

public synchronized long nextId() {

long timestamp = timeGen();

//获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常

if (timestamp < lastTimestamp) {

System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);

throw new RuntimeException(String.

以上是 记录一下雪花算法的原理and Java实现 的全部内容, 来源链接: utcz.com/z/390191.html

回到顶部