python常见面试题(三)

python

问题1

到底什么是Python?你可以在回答中与其他技术进行对比(也鼓励这样做)。

答案

下面是一些关键点:

  • Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译。其他解释型语言还包括PHP和Ruby。
  • Python是动态类型语言,指的是你在声明变量时,不需要说明变量的类型。你可以直接编写类似x=111x="I\'m a string"这样的代码,程序不会报错。
  • Python非常适合面向对象的编程(OOP),因为它支持通过组合(composition)与继承(inheritance)的方式定义类(class)。Python中没有访问说明符(access specifier,类似C++中的publicprivate),这么设计的依据是“大家都是成年人了”。
  • 在Python语言中,函数是第一类对象(first-class objects)。这指的是它们可以被指定给变量,函数既能返回函数类型,也可以接受函数作为输入。类(class)也是第一类对象。
  • Python代码编写快,但是运行速度比编译语言通常要慢。好在Python允许加入基于C语言编写的扩展,因此我们能够优化代码,消除瓶颈,这点通常是可以实现的。numpy就是一个很好地例子,它的运行速度真的非常快,因为很多算术运算其实并不是通过Python实现的。
  • Python用途非常广泛——网络应用,自动化,科学建模,大数据应用,等等。它也常被用作“胶水语言”,帮助其他语言和组件改善运行状况。
  • Python让困难的事情变得容易,因此程序员可以专注于算法和数据结构的设计,而不用处理底层的细节。

为什么提这个问题:

如果你应聘的是一个Python开发岗位,你就应该知道这是门什么样的语言,以及它为什么这么酷。以及它哪里不好。

问题2

补充缺失的代码

python;gutter:true;">def print_directory_contents(sPath):

"""

这个函数接受文件夹的名称作为输入参数,

返回该文件夹中文件的路径,

以及其包含文件夹中文件的路径。

"""

# 补充代码

 

答案

dir_list=[]

def print_directory_contents(sPath):

import os

for sChild in os.listdir(sPath):

sChildPath = os.path.join(sPath,sChild)

dir_list.append(sChildPath)

if os.path.isdir(sChildPath):

print_directory_contents(sChildPath)

else:

print (sChildPath)

  

特别要注意以下几点:

  • 命名规范要统一。如果样本代码中能够看出命名规范,遵循其已有的规范。
  • 递归函数需要递归并终止。确保你明白其中的原理,否则你将面临无休无止的调用栈(callstack)。
  • 我们使用os模块与操作系统进行交互,同时做到交互方式是可以跨平台的。你可以把代码写成sChildPath = sPath + \'/\' + sChild,但是这个在Windows系统上会出错。
  • 熟悉基础模块是非常有价值的,但是别想破脑袋都背下来,记住Google是你工作中的良师益友。
  • 如果你不明白代码的预期功能,就大胆提问。
  • 坚持KISS原则!保持简单,不过脑子就能懂!

为什么提这个问题:

  • 说明面试者对与操作系统交互的基础知识
  • 递归真是太好用啦

问题3

阅读下面的代码,写出A0,A1至An的最终值。

A0 = dict(zip((\'a\',\'b\',\'c\',\'d\',\'e\'),(1,2,3,4,5)))

A1 = range(10)

A2 = [i for i in A1 if i in A0]

A3 = [A0[s] for s in A0]

A4 = [i for i in A1 if i in A3]

A5 = {i:i*i for i in A1}

A6 = [[i,i*i] for i in A1]

  

答案

A0 = {\'a\': 1, \'c\': 3, \'b\': 2, \'e\': 5, \'d\': 4}

A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (注意,此为python2返回值,python3中返回为迭代器,range(0,10))

A2 = []

A3 = [1, 3, 2, 5, 4]

A4 = [1, 2, 3, 4, 5]

A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]

  

 

为什么提这个问题:

  • 列表解析(list comprehension)十分节约时间,对很多人来说也是一个大的学习障碍。
  • 如果你读懂了这些代码,就很可能可以写下正确地值。
  • 其中部分代码故意写的怪怪的。因为你共事的人之中也会有怪人。

问题4

Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法。

答案

Python并不支持真正意义上的多线程。Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意。Python中有一个被称为Global Interpreter Lock(GIL)的东西,它会确保任何时候你的多个线程中,只有一个被执行。线程的执行速度非常之快,会让你误以为线程是并行执行的,但是实际上都是轮流执行。经过GIL这一道关卡处理,会增加执行的开销。这意味着,如果你想提高代码的运行速度,使用threading包并不是一个很好的方法。

不过还是有很多理由促使我们使用threading包的。如果你想同时执行一些任务,而且不考虑效率问题,那么使用这个包是完全没问题的,而且也很方便。但是大部分情况下,并不是这么一回事,你会希望把多线程的部分外包给操作系统完成(通过开启多个进程),或者是某些调用你的Python代码的外部程序(例如Spark或Hadoop),又或者是你的Python代码调用的其他代码(例如,你可以在Python中调用C函数,用于处理开销较大的多线程工作)。

为什么提这个问题

因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。

问题5

你如何管理不同版本的代码?

答案:

版本管理!被问到这个问题的时候,你应该要表现得很兴奋,甚至告诉他们你是如何使用Git(或是其他你最喜欢的工具)追踪自己和奶奶的书信往来。

我偏向于使用Git作为版本控制系统(VCS),但还有其他的选择,比如subversion(SVN)。

为什么提这个问题:

因为没有版本控制的代码,就像没有杯子的咖啡。有时候我们需要写一些一次性的、可以随手扔掉的脚本,这种情况下不作版本控制没关系。但是如果你面对的是大量的代码,使用版本控制系统是有利的。版本控制能够帮你追踪谁对代码库做了什么操作;发现新引入了什么bug;管理你的软件的不同版本和发行版;在团队成员中分享源代码;部署及其他自动化处理。它能让你回滚到出现问题之前的版本,单凭这点就特别棒了。还有其他的好功能。怎么一个棒字了得!

问题6

下面代码会输出什么:

def f(x,l=[]):

for i in range(x):

l.append(i*i)

print (l)

f(2)

f(3,[3,2,1])

f(3)

  

答案:

[0, 1]

[3, 2, 1, 0, 1, 4]

[0, 1, 0, 1, 4]

  

呃?

第一个函数调用十分明显,for循环先后将0和1添加至了空列表l中。l是变量的名字,指向内存中存储的一个列表。

第二个函数调用在一块新的内存中创建了新的列表。l这时指向了新生成的列表。之后再往新列表中添加0、1、2和4。很棒吧。

第三个函数调用的结果就有些奇怪了。它使用了之前内存地址中存储的旧列表。这就是为什么它的前两个元素是0和1了。

不明白的话就试着运行下面的代码吧:

l_mem = []

l = l_mem # the first call

for i in range(2):

l.append(i*i)

print (l) # [0, 1]

l = [3,2,1] # the second call

for i in range(3):

l.append(i*i)

print (l) # [3, 2, 1, 0, 1, 4]

l = l_mem # the third call

for i in range(3):

l.append(i*i)

print (l) # [0, 1, 0, 1, 4]

  

 

问题7

“猴子补丁”(monkey patching)指的是什么?这种做法好吗?

答案:

“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。

举个例子:

import datetime

datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)

大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock包对实现这个目的很有帮助。

为什么提这个问题?

答对这个问题说明你对单元测试的方法有一定了解。你如果提到要避免“猴子补丁”,可以说明你不是那种喜欢花里胡哨代码的程序员(公司里就有这种人,跟他们共事真是糟糕透了),而是更注重可维护性。还记得KISS原则码?答对这个问题还说明你明白一些Python底层运作的方式,函数实际是如何存储、调用等等。

另外:如果你没读过mock模块的话,真的值得花时间读一读。这个模块非常有用。

问题8

这两个参数是什么意思:*args**kwargs?我们为什么要使用它们?

答案

如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args

如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargs

argskwargs这两个标识符是约定俗成的用法,你当然还可以用*bob**billy,但是这样就并不太妥。

下面是具体的示例:

def f(*args,**kwargs): print (args, kwargs)

l = [1,2,3]

t = (4,5,6)

d = {\'a\':7,\'b\':8,\'c\':9}

f()

f(1,2,3) # (1, 2, 3) {}

f(1,2,3,"groovy") # (1, 2, 3, \'groovy\') {}

f(a=1,b=2,c=3) # () {\'a\': 1, \'c\': 3, \'b\': 2}

f(a=1,b=2,c=3,zzz="hi") # () {\'a\': 1, \'c\': 3, \'b\': 2, \'zzz\': \'hi\'}

f(1,2,3,a=1,b=2,c=3) # (1, 2, 3) {\'a\': 1, \'c\': 3, \'b\': 2}

f(*l,**d) # (1, 2, 3) {\'a\': 7, \'c\': 9, \'b\': 8}

f(*t,**d) # (4, 5, 6) {\'a\': 7, \'c\': 9, \'b\': 8}

f(1,2,*t) # (1, 2, 4, 5, 6) {}

f(q="winning",**d) # () {\'a\': 7, \'q\': \'winning\', \'c\': 9, \'b\': 8}

f(1,2,*t,q="winning",**d) # (1, 2, 4, 5, 6) {\'a\': 7, \'q\': \'winning\', \'c\': 9, \'b\': 8}

def f2(arg1,arg2,*args,**kwargs): print (arg1,arg2, args, kwargs)

f2(1,2,3) # 1 2 (3,) {}

f2(1,2,3,"groovy") # 1 2 (3, \'groovy\') {}

f2(arg1=1,arg2=2,c=3) # 1 2 () {\'c\': 3}

f2(arg1=1,arg2=2,c=3,zzz="hi") # 1 2 () {\'c\': 3, \'zzz\': \'hi\'}

f2(1,2,3,a=1,b=2,c=3) # 1 2 (3,) {\'a\': 1, \'c\': 3, \'b\': 2}

f2(*l,**d) # 1 2 (3,) {\'a\': 7, \'c\': 9, \'b\': 8}

f2(*t,**d) # 4 5 (6,) {\'a\': 7, \'c\': 9, \'b\': 8}

f2(1,2,*t) # 1 2 (4, 5, 6) {}

f2(1,1,q="winning",**d) # 1 1 () {\'a\': 7, \'q\': \'winning\', \'c\': 9, \'b\': 8}

f2(1,2,*t,q="winning",**d) # 1 2 (4, 5, 6) {\'a\': 7, \'q\': \'winning\', \'c\': 9, \'b\': 8}

  

为什么提这个问题?

有时候,我们需要往函数中传入未知个数的参数或关键词参数。有时候,我们也希望把参数或关键词参数储存起来,以备以后使用。有时候,仅仅是为了节省时间。

问题9

下面这些是什么意思:@classmethod@staticmethod@property

回答背景知识

这些都是装饰器(decorator)。装饰器是一种特殊的函数,要么接受函数作为输入参数,并返回一个函数,要么接受一个类作为输入参数,并返回一个类。

@标记是语法糖(syntactic sugar),可以让你以简单易读得方式装饰目标对象。

@my_decorator

def my_func(stuff):

do_things

Is equivalent to

def my_func(stuff):

do_things

my_func = my_decorator(my_func)

你可以在本网站上找到介绍装饰器工作原理的教材。

真正的答案

@classmethod@staticmethod@property这三个装饰器的使用对象是在类中定义的函数。下面的例子展示了它们的用法和行为:

class MyClass(object):

def __init__(self):

self._some_property = "properties are nice"

self._some_other_property = "VERY nice"

def normal_method(*args,**kwargs):

print ("calling normal_method({0},{1})".format(args,kwargs))

@classmethod

def class_method(*args,**kwargs):

print ("calling class_method({0},{1})".format(args,kwargs))

@staticmethod

def static_method(*args,**kwargs):

print ("calling static_method({0},{1})".format(args,kwargs))

@property

def some_property(self,*args,**kwargs):

print ("calling some_property getter({0},{1},{2})".format(self,args,kwargs))

return self._some_property

@some_property.setter

def some_property(self,*args,**kwargs):

print ("calling some_property setter({0},{1},{2})".format(self,args,kwargs))

self._some_property = args[0]

@property

def some_other_property(self,*args,**kwargs):

print ("calling some_other_property getter({0},{1},{2})".format(self,args,kwargs))

return self._some_other_property

 



o = MyClass()

# 未装饰的方法还是正常的行为方式,需要当前的类实例(self)作为第一个参数。

o.normal_method

# <bound method MyClass.normal_method of <__main__.MyClass instance at 0x7fdd2537ea28>>

o.normal_method()

# normal_method((<__main__.MyClass instance at 0x7fdd2537ea28>,),{})

o.normal_method(1,2,x=3,y=4)

# normal_method((<__main__.MyClass instance at 0x7fdd2537ea28>, 1, 2),{\'y\': 4, \'x\': 3})

# 类方法的第一个参数永远是该类

o.class_method

# <bound method classobj.class_method of <class __main__.MyClass at 0x7fdd2536a390>>

o.class_method()

# class_method((<class __main__.MyClass at 0x7fdd2536a390>,),{})

o.class_method(1,2,x=3,y=4)

# class_method((<class __main__.MyClass at 0x7fdd2536a390>, 1, 2),{\'y\': 4, \'x\': 3})

# 静态方法(static method)中除了你调用时传入的参数以外,没有其他的参数。

o.static_method

# <function static_method at 0x7fdd25375848>

o.static_method()

# static_method((),{})

o.static_method(1,2,x=3,y=4)

# static_method((1, 2),{\'y\': 4, \'x\': 3})

# @property是实现getter和setter方法的一种方式。直接调用它们是错误的。

# “只读”属性可以通过只定义getter方法,不定义setter方法实现。

o.some_property

# 调用some_property的getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})

# \'properties are nice\'

# “属性”是很好的功能

o.some_property()

# calling some_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})

# Traceback (most recent call last):

# File "<stdin>", line 1, in <module>

# TypeError: \'str\' object is not callable

o.some_other_property

# calling some_other_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})

# \'VERY nice\'

# o.some_other_property()

# calling some_other_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})

# Traceback (most recent call last):

# File "<stdin>", line 1, in <module>

# TypeError: \'str\' object is not callable

o.some_property = "groovy"

# calling some_property setter(<__main__.MyClass object at 0x7fb2b7077890>,(\'groovy\',),{})

o.some_property

# calling some_property getter(<__main__.MyClass object at 0x7fb2b7077890>,(),{})

# \'groovy\'

o.some_other_property = "very groovy"

# Traceback (most recent call last):

# File "<stdin>", line 1, in <module>

# AttributeError: can\'t set attribute

o.some_other_property

# calling some_other_property getter(<__main__.MyClass object at 0x7fb2b7077890>,(),{})

问题10

阅读下面的代码,它的输出结果是什么?

class A(object):

def go(self):

print "go A go!"

def stop(self):

print "stop A stop!"

def pause(self):

raise Exception("Not Implemented")

class B(A):

def go(self):

super(B, self).go()

print "go B go!"

class C(A):

def go(self):

super(C, self).go()

print "go C go!"

def stop(self):

super(C, self).stop()

print "stop C stop!"

class D(B,C):

def go(self):

super(D, self).go()

print "go D go!"

def stop(self):

super(D, self).stop()

print "stop D stop!"

def pause(self):

print "wait D wait!"

class E(B,C): pass

a = A()

b = B()

c = C()

d = D()

e = E()

# 说明下列代码的输出结果

a.go()

b.go()

c.go()

d.go()

e.go()

a.stop()

b.stop()

c.stop()

d.stop()

e.stop()

a.pause()

b.pause()

c.pause()

d.pause()

e.pause()

答案

输出结果以注释的形式表示:

a.go()

# go A go!

b.go()

# go A go!

# go B go!

c.go()

# go A go!

# go C go!

d.go()

# go A go!

# go C go!

# go B go!

# go D go!

e.go()

# go A go!

# go C go!

# go B go!

a.stop()

# stop A stop!

b.stop()

# stop A stop!

c.stop()

# stop A stop!

# stop C stop!

d.stop()

# stop A stop!

# stop C stop!

# stop D stop!

e.stop()

# stop A stop!

a.pause()

# ... Exception: Not Implemented

b.pause()

# ... Exception: Not Implemented

c.pause()

# ... Exception: Not Implemented

d.pause()

# wait D wait!

e.pause()

# ...Exception: Not Implemented

为什么提这个问题?

因为面向对象的编程真的真的很重要。不骗你。答对这道问题说明你理解了继承和Python中super函数的用法。

问题11

阅读下面的代码,它的输出结果是什么?

class Node(object):

def __init__(self,sName):

self._lChildren = []

self.sName = sName

def __repr__(self):

return "<Node \'{}\'>".format(self.sName)

def append(self,*args,**kwargs):

self._lChildren.append(*args,**kwargs)

def print_all_1(self):

print self

for oChild in self._lChildren:

oChild.print_all_1()

def print_all_2(self):

def gen(o):

lAll = [o,]

while lAll:

oNext = lAll.pop(0)

lAll.extend(oNext._lChildren)

yield oNext

for oNode in gen(self):

print oNode

oRoot = Node("root")

oChild1 = Node("child1")

oChild2 = Node("child2")

oChild3 = Node("child3")

oChild4 = Node("child4")

oChild5 = Node("child5")

oChild6 = Node("child6")

oChild7 = Node("child7")

oChild8 = Node("child8")

oChild9 = Node("child9")

oChild10 = Node("child10")

oRoot.append(oChild1)

oRoot.append(oChild2)

oRoot.append(oChild3)

oChild1.append(oChild4)

oChild1.append(oChild5)

oChild2.append(oChild6)

oChild4.append(oChild7)

oChild3.append(oChild8)

oChild3.append(oChild9)

oChild6.append(oChild10)

# 说明下面代码的输出结果

oRoot.print_all_1()

oRoot.print_all_2()

答案

oRoot.print_all_1()会打印下面的结果:

<Node \'root\'>

<Node \'child1\'>

<Node \'child4\'>

<Node \'child7\'>

<Node \'child5\'>

<Node \'child2\'>

<Node \'child6\'>

<Node \'child10\'>

<Node \'child3\'>

<Node \'child8\'>

<Node \'child9\'>

oRoot.print_all_1()会打印下面的结果:

<Node \'root\'>

<Node \'child1\'>

<Node \'child2\'>

<Node \'child3\'>

<Node \'child4\'>

<Node \'child5\'>

<Node \'child6\'>

<Node \'child8\'>

<Node \'child9\'>

<Node \'child7\'>

<Node \'child10\'>

为什么提这个问题?

因为对象的精髓就在于组合(composition)与对象构造(object construction)。对象需要有组合成分构成,而且得以某种方式初始化。这里也涉及到递归和生成器(generator)的使用。

生成器是很棒的数据类型。你可以只通过构造一个很长的列表,然后打印列表的内容,就可以取得与print_all_2类似的功能。生成器还有一个好处,就是不用占据很多内存。

有一点还值得指出,就是print_all_1会以深度优先(depth-first)的方式遍历树(tree),而print_all_2则是宽度优先(width-first)。有时候,一种遍历方式比另一种更合适。但这要看你的应用的具体情况。

问题12

简要描述Python的垃圾回收机制(garbage collection)。

答案

这里能说的很多。你应该提到下面几个主要的点:

  • Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。
  • 偶尔也会出现引用循环(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1o2,而且符合o1.x == o2o2.x == o1这两个条件。如果o1o2没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。
  • Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。

问题13

将下面的函数按照执行效率高低排序。它们都接受由0至1之间的数字构成的列表作为输入。这个列表可以很长。一个输入列表的示例如下:[random.random() for i in range(100000)]。你如何证明自己的答案是正确的。

def f1(lIn):

l1 = sorted(lIn)

l2 = [i for i in l1 if i<0.5]

return [i*i for i in l2]

def f2(lIn):

l1 = [i for i in lIn if i<0.5]

l2 = sorted(l1)

return [i*i for i in l2]

def f3(lIn):

l1 = [i*i for i in lIn]

l2 = sorted(l1)

return [i for i in l1 if i<(0.5*0.5)]

答案

按执行效率从高到低排列:f2、f1和f3。要证明这个答案是对的,你应该知道如何分析自己代码的性能。Python中有一个很好的程序分析包,可以满足这个需求。

import cProfile

lIn = [random.random() for i in range(100000)]

cProfile.run(\'f1(lIn)\')

cProfile.run(\'f2(lIn)\')

cProfile.run(\'f3(lIn)\')

为了向大家进行完整地说明,下面我们给出上述分析代码的输出结果:

>>> cProfile.run(\'f1(lIn)\')

4 function calls in 0.045 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.009 0.009 0.044 0.044 <stdin>:1(f1)

1 0.001 0.001 0.045 0.045 <string>:1(<module>)

1 0.000 0.000 0.000 0.000 {method \'disable\' of \'_lsprof.Profiler\' objects}

1 0.035 0.035 0.035 0.035 {sorted}

>>> cProfile.run(\'f2(lIn)\')

4 function calls in 0.024 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.008 0.008 0.023 0.023 <stdin>:1(f2)

1 0.001 0.001 0.024 0.024 <string>:1(<module>)

1 0.000 0.000 0.000 0.000 {method \'disable\' of \'_lsprof.Profiler\' objects}

1 0.016 0.016 0.016 0.016 {sorted}

>>> cProfile.run(\'f3(lIn)\')

4 function calls in 0.055 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.016 0.016 0.054 0.054 <stdin>:1(f3)

1 0.001 0.001 0.055 0.055 <string>:1(<module>)

1 0.000 0.000 0.000 0.000 {method \'disable\' of \'_lsprof.Profiler\' objects}

1 0.038 0.038 0.038 0.038 {sorted}

为什么提这个问题?

定位并避免代码瓶颈是非常有价值的技能。想要编写许多高效的代码,最终都要回答常识上来——在上面的例子中,如果列表较小的话,很明显是先进行排序更快,

因此如果你可以在排序前先进行筛选,那通常都是比较好的做法。其他不显而易见的问题仍然可以通过恰当的工具来定位。因此了解这些工具是有好处的。

问题14

你有过失败的经历吗?

错误的答案

我从来没有失败过!

为什么提这个问题?

恰当地回答这个问题说明你用于承认错误,为自己的错误负责,并且能够从错误中学习。如果你想变得对别人有帮助的话,所有这些都是特别重要的。

如果你真的是个完人,那就太糟了,回答这个问题的时候你可能都有点创意了。

问题15

你有实施过个人项目吗?

真的?

如果做过个人项目,这说明从更新自己的技能水平方面来看,你愿意比最低要求付出更多的努力。如果你有维护的个人项目,工作之外也坚持编码,那么你的雇主就更可能把你视作为会增值的资产。

即使他们不问这个问题,我也认为谈谈这个话题很有帮助。

结语

我给出的这些问题时,有意涉及了多个领域。而且答案也是特意写的较为啰嗦。在编程面试中,你需要展示你对语言的理解,如果你能简要地说清楚,那请务必那样做。

我尽量在答案中提供了足够的信息,即使是你之前从来没有了解过这些领域,你也可以从答案中学到些东西。我希望本文能够帮助你找到满意的工作。

加油!

 

本文由EarlGrey@编程派独家编译,转载请务必注明作者及出处。

原文:Sheena@codementor 译文:编程派

以上是 python常见面试题(三) 的全部内容, 来源链接: utcz.com/z/388828.html

回到顶部