Python -- 数据加载、存储与文件格式
标签(空格分隔): Python
读入读出通常可以划分为几个大类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据,利用Web API操作网络资源。
读写文本格式的数据
pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,如下表所示:
函数 | 说明 |
---|---|
read_csv | 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为, |
read_table | 从文件、URL、文件型对象中加载带分隔符的数据,默认的分隔符为制表符"\t" |
read_fwf | 读取定宽列格式数据 -- 木有分隔符的 |
read_clipboard | 读取剪贴板中的数据,可以看做read_table的剪贴板。将网页转换为表格时很有用 |
for example:
In[]: import pandas as pdIn[]: df = pd.read_csv(\'ex1.csv\') # \'\'内写入文件所在的详细目录
In[]: df = pd.read_table(\'ex1.csv\', sep = \',\') # 或者使用table并指定分隔符
# 当你要读入的文件没有标题行时:
In[]: df = pd.read_csv(\'ex2.csv\', header = None) # 让pandas为其分配默认的列名
In[]: df = pd.read_csv(\'ex2.csv\', names = [\'a\',\'b\',\'c\',\'d\',\'message\']) # 自己定义标题行
In [8]: names = [\'a\',\'b\',\'c\',\'d\',\'message\']
# 让其中的某列作为列索引
In [9]: pd.read_csv(\'ex2.csv\', names = names, index_col = \'message\')
Out[9]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
In[]: pd.read_csv(\'ex4.csv\', skiprows = [0, 2, 3]) # 略过第0,2,3行不读取
# 用一个字典为各列指定不同的NA标记值
In[]: patterns = {\'message\':[\'foo\', \'NA\'], \'something\':[\'two\']}
In[]: pd.read_csv(\'ex5.csv\', na_values=patterns)
read_csv/read_table
函数的参数
参数 | 说明 |
---|---|
path | 表示文件系统位置、URL、文件型对象的字符串 |
sep/delimiter | 用于对行中各字段进行拆分的字符序列或正则表达式 |
header | 用作列名的行号。如果没有header行就应该设置为None |
index_col | 用作行索引的列编号或列名,可以是单个名称/数字或由多个名称/数字组成的列表 |
names | 用于结果的列名列表,结合header = None |
skiprows | 需要忽略的行数 |
na_values | 一组用于替换NA的值 |
comment | 用于将注释信息从行尾拆分出去的字符 |
parse_dates | 尝试将数据解析为日期 |
nrows | 需要读取的行数 |
skip_footer | 需要忽略的行数 |
逐块读取文本文件
In[]: pd.read_csv(\'ex6.csv\', nrows=5)
将数据写出到文本
In[]: data = pd.read_csv(\'ex5.csv\')In[]: data.to_csv(\'out.csv\') # 将data中的数据写出到当前目录中的out.csv中
In[]: data.to_csv(sys.stdout, sep=\'|\') # 打印到屏幕
In[]: data.to_csv(sys.stdout, na_rep=\'NULL\') # 空字符处显示为NULL
In[]: data.to_csv(sys.stdout, index=False, header=False) # 禁用行和列的标签
In[]: data.to_csv(sys.stdout, index=False, cols=[\'a\', \'b\', \'c\']) # 按照指定的顺序显示列
# Series中的to_csv方法
In [39]: dates = pd.date_range(\'1/1/2000\', periods = 7)
In [40]: dates
Out[40]:
DatetimeIndex([\'2000-01-01\', \'2000-01-02\', \'2000-01-03\', \'2000-01-04\', \'2000-01-05\', \'2000-01-06\', \'2000-01-07\'], dtype=\'datetime64[ns]\', freq=\'D\')
In [45]: ts = Series(np.arange(7), index = dates)
In [46]: ts
Out[46]:
2000-01-01 0
2000-01-02 1
2000-01-03 2
2000-01-04 3
2000-01-05 4
2000-01-06 5
2000-01-07 6
Freq: D, dtype: int64
In [47]: ts.to_csv(\'tseries.csv\')
In [48]: cat tseries.csv
2000-01-01,0
2000-01-02,1
2000-01-03,2
2000-01-04,3
2000-01-05,4
2000-01-06,5
2000-01-07,6
In[]: Series.from_csv(\'tseries.csv\',parse_dates = False) # 从文件中读入到Series
手工处理分隔符
In [50]: cat ex7.csv"a","b","c"
"1","2","3"
"1","2","3","4"
In [51]: import csv
In [52]: f = open(\'ex7.csv\')
In [53]: reader = csv.reader(f)
In [54]: for line in reader:
...: print line
...:
[\'a\', \'b\', \'c\']
[\'1\', \'2\', \'3\']
[\'1\', \'2\', \'3\', \'4\']
# 可以对数据做一些处理
In[]: lines = list(csv.reader(open(\'ex7.csv\')))
In[]: header, values = lines[0], lines[1:]
In[]: data_dict = {h:v for h,v in zip(header, zip(*values))}
- CSV语支选项
参数 | 说明 |
---|---|
delimiter | 用于分割字段的单字符字符串,默认为\',\' |
lineterminator | 用于写操作的行结束符,默认为\'\r\n\'。读操作将忽略此选项 |
quotechar | 用于带有特殊字符的字段的引用符号,默认为\'"\' |
JSON数据
JSON(JavaScript Object Notation)已经成为通过HTTP请求在Web浏览器和其他应用程序之间发送数据的标准格式之一。
import jsonIn [65]: obj = """{"name":"Wes", "places_lived":["United States", "Spain", "Germany"], "pet":nu
...: ll, "siblings":[{"name":"Scott","age":25,"pet":"Zuko"},{"name":"Katy","age":33,"pet":"
...: Cisco"}]}"""
In [68]: res = json.loads(obj) # 将JSON字符串转换为Python形式
In [69]: res
Out[69]:
{u\'name\': u\'Wes\',
u\'pet\': None,
u\'places_lived\': [u\'United States\', u\'Spain\', u\'Germany\'],
u\'siblings\': [{u\'age\': 25, u\'name\': u\'Scott\', u\'pet\': u\'Zuko\'},
{u\'age\': 33, u\'name\': u\'Katy\', u\'pet\': u\'Cisco\'}]}
# 将Python转换为json
In [71]: asjson = json.dumps(res)
In [72]: asjson
Out[72]: \'{"pet": null, "siblings": [{"pet": "Zuko", "age": 25, "name": "Scott"}, {"pet": "Cisco", "age": 33, "name": "Katy"}], "name": "Wes", "places_lived": ["United States", "Spain", "Germany"]}\'
In[]: data = DataFrame(res[\'siblings\'], columns=[\'name\', \'age\'])
In [75]: data
Out[75]:
name age
0 Scott 25
1 Katy 33
使用HTML和Web API
import requestsIn[]: url = \'http://www.baidu.com\'
In[]: resp = requests.get(url)
In[]: import json
In[]: data = json.loads(resp.text) # Response对象的text属性含有GET请求的内容,大多返回JSON对象,加载到Python对象中
In[]: data.keys()
使用数据库
In[]: import sqlite3In[]: query = """create table test(a varchar(20), b varchar(20), c real, d integer);"""
In[]: con = sqlite3.connect(\':memory:\') # 连接数据库
In[]: con.execute(query)
In[]: con.commit()
In[]: data = [(\'Atlanta\', \'Georgia\', 1.25, 6), (\'Tall\', \'Flor\', 2.6, 3), (\'Saca\', \'Calif\', 1.7, 5)]
In[]: stmt = "insert into test values(?, ?, ?, ?)"
In[]: con.execute(stmt, data)
In[]: con.commit()
In[]: datas = con.execute(\'select * from test\')
In[]: lines = datas.fetchall() # 从表中读取数据,将返回一个元祖列表
In[]: datas.description # 获得列名
In[]: DataFrame(rows, columns=zip(*datas.description)[0])
In[]: import pandas.io.sql as sql
In[]: sql.read_frame(\'select * from test\', con) # 传入sql语句和连接对象
以上是 Python -- 数据加载、存储与文件格式 的全部内容, 来源链接: utcz.com/z/388195.html