[Python] Scipy and Numpy(1)

python

python;gutter:true;">import numpy as np

#Create an array of 1*10^7 elements

arr = np.arange(1e7)

#Converting ndarray to list

larr = arr.tolist()

#Create a 2D numpy array

arr = np.zeros((3,3))

#Converting a array to matrix

mat = np.matrix(arr)

np.matrix('1,2,3;4,5,6;7,8,9');

#Array Creation

#First we create a list and then

#wrap it with the np.array() function

alist = [1,2,3]

arr = np.array(alist)

#Creating an array of zeros with 5 elements

arr = np.zeros(5)

#Creating an array going from 0 to 100

#not include 100

arr = np.arange(100)

#from 10 to 100 (not include 100)

arr = np.arange(10, 100)

#100 steps form 1 to 100

#(start, end, step)

arr = np.linspace(0, 1, 100)

#Creating an 5X5 array of zeros

image = np.zeros((5,5))

#Creating a 5X5X5 cube of 1's

#The astype() method sets the array with integer elements

cube = np.zeros(5,5,5).astype(int) + 1

#Or even simpler with 16-bit floating-point precision

cube = np.ones((5,5,5)).astype(np.float16)

#Change Data type

#Use dtype: int numpy.float16, numpy.float32, numpy.float64

arr = np.zeros(2, dtype=int)

arr = np.zeros(2, dtype=np.float32)

'''

The restructured arrays are just different views

of the same data in memory.

If chang one of them, you will change all.

If you don't want this to happen, then use the numpy.copy function

to separete the arrays mamory-wise.

'''

#Created arrays and reshape them in many others ways

#Creating an array with elements from 0 to 999

arr1d = np.arange(1000)

#reshaping the array to a 10x10x10 3D array

arr3d = arr1d.reshape((10,10,10))

arr3d = np.reshape(arr1d, (10,10,10))

#Invesely, we can flatten arrays

arr4d = np.zeros((10,10,10,10))

arr1d = arr4d.ravel()

print arr1d.shape

recarr = np.zeros((2,), dtype('i4, f4, a10'))

#the type for the first to third columns

#i4 := 32-bit integer

#f4 := 32-bit float

#a10 := a string 10 characters long

#We can assign names to each column

recarr.dtype.names = ('Integers', 'Floats', 'Strings')

#Indexing and Slicing

alist = [[1,2],[3,4]]

arr = np.array(alist)

arr[0,1]#It's the same as arr[0][1]

arr[:,1]#return the last column

arr[1,:]#return the bottom row

  

以上是 [Python] Scipy and Numpy(1) 的全部内容, 来源链接: utcz.com/z/387133.html

回到顶部