Python(算法)-时间复杂度和空间复杂度
时间复杂度
算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况
时间复杂度是用来估计算法运行时间的一个式子(单位),一般来说,时间复杂度高的算法比复杂度低的算法慢
print(\'Hello world\') # O(1)# O(1)
print(\'Hello World\')
print(\'Hello Python\')
print(\'Hello Algorithm\')
for i in range(n): # O(n)
print(\'Hello world\')
for i in range(n): # O(n^2)
for j in range(n):
print(\'Hello world\')
for i in range(n): # O(n^2)
print(\'Hello World\')
for j in range(n):
print(\'Hello World\')
for i in range(n): # O(n^2)
for j in range(i):
print(\'Hello World\')
for i in range(n):
for j in range(n):
for k in range(n):
print(\'Hello World\') # O(n^3)
几次循环就是n的几次方的时间复杂度
n = 64while n > 1:
print(n)
n = n // 2
26 = 64,log264 = 6,所以循环减半的时间复杂度为O(log2n),即O(logn)
如果是循环减半的过程,时间复杂度为O(logn)或O(log2n)
常见的时间复杂度高低排序:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n2logn)<O(n3)
空间复杂度
空间复杂度:用来评估算法内存占用大小的一个式子
a = \'Python\' # 空间复杂度为1# 空间复杂度为1
a = \'Python\'
b = \'PHP\'
c = \'Java\'
num = [1, 2, 3, 4, 5] # 空间复杂度为5
num = [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]] # 空间复杂度为5*4
num = [[[1, 2], [1, 2]], [[1, 2], [1, 2]] , [[1, 2], [1, 2]]] # 空间复杂度为3*2*2
定义一个或多个变量,空间复杂度都是为1,列表的空间复杂度为列表的长度
以上是 Python(算法)-时间复杂度和空间复杂度 的全部内容, 来源链接: utcz.com/z/386600.html