Spring源码系列 — Bean生命周期

本文内容纲要:

- 前言

- BeanFactory概览

- Bean的实例化

- Bean的装配

- Bean的后置处理

- Bean的初始化

- 总结

前言

上篇文章中介绍了Spring容器的扩展点,这个是在Bean的创建过程之前执行的逻辑。承接扩展点之后,就是Spring容器的另一个核心:Bean的生命周期过程。这个生命周期过程大致经历了一下的几个阶段

在本节中重点介绍实例化、填充装配、唤醒Aware方法、BeanPostProcessor后置处理、初始化等过程。关于Bean的销毁过程这里不再介绍。由于Bean的生命周期的维护过程实际上都是由BeanFactory负责,所以在开始Bean的生命周期过程详解之前,先概览性了解BeanFactory。本文目录:

  • BeanFactory概览
  • Bean的实例化
  • Bean的装配
  • Bean的后置处理
  • Bean的初始化

BeanFactory概览

简单点说,BeanFactory就是Spring框架的内核,它负责Bean的整个生命周期的管理。在Spring中对该抽象出了一套BeanFactory的接口,仍然遵守接口隔离,单一职责原则。

Spring将BeanFactory抽象出了最顶层接口,主要提供给client一个Spring容器的视图。

下面都是根据BeanFactory的功能进行划分拆分隔离出不同功能的Bean工厂:

  1. 具有层次的BeanFactory,存在父子关系
  2. 可罗列的BeanFactory,提供获取Bean定义个数、获取所有的Bean名称、获取所有Bean定义等等的可罗列的能力
  3. 具有装配能力的BeanFactory,提供自动装配Bean的能力,这个可谓是Spring的核心,自动装配依赖注入
  4. 可配置的BeanFactory,提供配置父BeanFactory、类加载器、转换服务等等能力

这一套BeanFactory可谓抽象的淋漓尽致。从这里也可以看出Spring设计上的优秀程度,也提现作者们的面向对象的思维和设计模式的功底。

再者就是实现,其中AbstractBeanFactory无疑是核心,它是BeanFactory的基本能力的实现,提供了以下几点特性:

  1. 能够获取BeanDefinition,所以可以被实现可罗列的BeanFactory继承扩展
  2. 提供基本的单例创建的模板方法doGetBean,同时继承了SingletonBeanRegistry的实现DefaultSingletonBeanRegistry,从而具有单例缓存能力
  3. 实现了HierarchicalBeanFactory和ConfigurableBeanFactory接口,从而具有BeanFactory的层次能力,也具有配置BeanFactory的能力

AbstractAutowireCapableBeanFactory在AbstractBeanFactory的基础上扩展实现AutowireCapableBeanFactory接口,从而具有装配能力的BeanFactory。

DefaultListableBeanFactory是继承AbstractAutowireCapableBeanFactory并且实现ListableBeanFactory接口,从而具有可罗列的功能。它也是Spring中核心实现。基本上所有的上下文都是通过持有该BeanFactory实现,从而具有管理Bean的能力。

为了更形象直观的了解Bean的实现细节,先看下Bean的实例化、装配、后置处理、初始化的时序图:

Bean的实例化

Bean的实例化过程非常复杂,但是简单的概括,也就一个逻辑:从BeanDefinition华丽的转身至配置的Bean对象的过程,这节承接上篇文章扩展点,继续看AbstractApplicationContext的模板方法refresh后续的实例化Bean的逻辑流程。关于Bean的属性,如:Lazy-Init/Scope/Autowired Way等等,这里不再介绍,读者可以移步至Spring官网翻阅文档。

首先依然从源头refresh的模板方法着手:

try {

// Allows post-processing of the bean factory in context subclasses.

postProcessBeanFactory(beanFactory);

// Invoke factory processors registered as beans in the context.

invokeBeanFactoryPostProcessors(beanFactory);

// Register bean processors that intercept bean creation.

registerBeanPostProcessors(beanFactory);

... 忽略

// 模板方法中,这一步完成Bean工厂中遗留下的非惰性的Bean的实例化

// Instantiate all remaining (non-lazy-init) singletons.

finishBeanFactoryInitialization(beanFactory);

// Last step: publish corresponding event.

finishRefresh();

}catch (BeansException ex) {

... 忽略

}

finishBeanFactoryInitialization该方法是正式开始实例化应用配置的Bean的核心步骤(并不是所有的Bean都是这一步骤中实例化,如前篇文章中的那些扩张点,在这之前就已经实例化)

protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory) {

// 在实例化剩余的Bean之前,需要针对BeanFactory进行配置

// 1. 配置BeanFactory的转换service

// Initialize conversion service for this context.

if (beanFactory.containsBean(CONVERSION_SERVICE_BEAN_NAME) &&

beanFactory.isTypeMatch(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class)) {

beanFactory.setConversionService(

beanFactory.getBean(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class));

}

// 配置值解析器

// Register a default embedded value resolver if no bean post-processor

// (such as a PropertyPlaceholderConfigurer bean) registered any before:

// at this point, primarily for resolution in annotation attribute values.

if (!beanFactory.hasEmbeddedValueResolver()) {

beanFactory.addEmbeddedValueResolver(new StringValueResolver() {

@Override

public String resolveStringValue(String strVal) {

return getEnvironment().resolvePlaceholders(strVal);

}

});

}

// 过早实例化LoadTimeWeaverAware

// Initialize LoadTimeWeaverAware beans early to allow for registering their transformers early.

String[] weaverAwareNames = beanFactory.getBeanNamesForType(LoadTimeWeaverAware.class, false, false);

for (String weaverAwareName : weaverAwareNames) {

getBean(weaverAwareName);

}

// 停止使用temporary ClassLoader

// Stop using the temporary ClassLoader for type matching.

beanFactory.setTempClassLoader(null);

// 冻结配置,已经在实例化阶段且经过了BeanFactoryPostProcessor,不允许修改Bean定义

// Allow for caching all bean definition metadata, not expecting further changes.

beanFactory.freezeConfiguration();

// 实例化遗留的非惰性单例Bean

// Instantiate all remaining (non-lazy-init) singletons.

beanFactory.preInstantiateSingletons();

}

preInstantiateSingletons是ConfigurableListableBeanFactory工厂接口抽象的接口,确保非惰性的单例能够被实例化。默认实现是DefaultListableBeanFactory:

@Override

public void preInstantiateSingletons() throws BeansException {

if (logger.isDebugEnabled()) {

logger.debug("Pre-instantiating singletons in " + this);

}

// 在bean定义的拷贝上迭代,当是非规则的factory,初始化方法仍然能增加bean定义,也能正常规则

// 非规则的factory,很少使用,这里不做太多关注

// Iterate over a copy to allow for init methods which in turn register new bean definitions.

// While this may not be part of the regular factory bootstrap, it does otherwise work fine.

List<String> beanNames = new ArrayList<String>(this.beanDefinitionNames);

// 这里出发非惰性的单例的实例化

// Trigger initialization of all non-lazy singleton beans...

// 迭代每个bean名称,按名称逐个实例化

for (String beanName : beanNames) {

// 根据bean名称获取其对应的RootBeanDefinition

RootBeanDefinition bd = getMergedLocalBeanDefinition(beanName);

// 当是非抽象,且是单例,非惰性bean,则进行初始化;否则迭代下一个bean

if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) {

// 判断该名称的bean是否为工厂bean

if (isFactoryBean(beanName)) {

// 是工厂bean,则先获取该Bean对应的FactoryBean,在Spring中FactoryBean的名称命名规则为:"&" + "beanName"

final FactoryBean<?> factory = (FactoryBean<?>) getBean(FACTORY_BEAN_PREFIX + beanName);

boolean isEagerInit;

// 判断该工厂Bean是否可以过早实例化

// 标准的FactoryBean是不过早实例化的,只有在被调用进行实际访问时才实例化

// 而SmartFactoryBean提供了可以设置是否尽早实例化

if (System.getSecurityManager() != null && factory instanceof SmartFactoryBean) {

isEagerInit = AccessController.doPrivileged(new PrivilegedAction<Boolean>() {

@Override

public Boolean run() {

return ((SmartFactoryBean<?>) factory).isEagerInit();

}

}, getAccessControlContext());

}

else {

// 非SmartFactoryBean时,则不实例化;如果是,则判断SmartFactoryBean的尽早实例化的设置参数

isEagerInit = (factory instanceof SmartFactoryBean &&

((SmartFactoryBean<?>) factory).isEagerInit());

}

// 如果非过早实例化,则迭代下一个Bean名称

if (isEagerInit) {

getBean(beanName);

}

}

// 非工厂bean

else {

// 获取该Bean名称对应的单例对象

// getBean是BeanFactory接口定义的接口,是面向Spring内部和应用的接口

// 其中包含了Bean的生命周期的部分

// getBean非常重要,是触发Bean的入口,也是获取Bean工厂中已存在单例的手段

getBean(beanName);

}

}

}

// Trigger post-initialization callback for all applicable beans...

// 针对所有Bean触发后置实例化回调,这里忽略

for (String beanName : beanNames) {

Object singletonInstance = getSingleton(beanName);

if (singletonInstance instanceof SmartInitializingSingleton) {

final SmartInitializingSingleton smartSingleton = (SmartInitializingSingleton) singletonInstance;

if (System.getSecurityManager() != null) {

AccessController.doPrivileged(new PrivilegedAction<Object>() {

@Override

public Object run() {

smartSingleton.afterSingletonsInstantiated();

return null;

}

}, getAccessControlContext());

}

else {

smartSingleton.afterSingletonsInstantiated();

}

}

}

}

  • 工厂Bean,对于工厂Bean判断是否为SmartFactoryBean,决定是否可以尽早实例化
  • 非工厂Bean

由于篇幅原因,关于isFactoryBean的实现这里不再详细介绍,可以自行阅读。接下来再继续看getBean的实现。getBean是AbstractBeanFactory中的基础实现:

@Override

public Object getBean(String name) throws BeansException {

return doGetBean(name, null, null, false);

}

其中内部调用doGetBean方法,方法参数较多:

  1. 第一个参数是Bean名称
  2. 第二个参数是被要求的类型
  3. 第三个参数是创建单例时需要使用的构造参数
  4. 第三个参标志是否为只仅仅类型检查获取,而非实际使用

doGetBean是AbstractBeanFactory中实现获取Bean的模板方法,作为BeanFactory的基础实现类,子类可以扩展实现创建Bean的逻辑。其中实现以下模板步骤:

  1. 从单例缓存中获取Bean

  2. 从父BeanFactory中获取该Bean

  3. 先获取该Bean的依赖Bean

  4. 按照不同的Bean作用域创建该Bean,该步骤被抽象为抽象接口,由子类实现扩展

  5. 如果该Bean是工厂Bean,则调用工厂Bean的生产方法getObject生成新的Bean

  6. 检查类型是否匹配,如果不匹配,则进行类型转换

    protected T doGetBean(

    final String name, final Class requiredType, final Object[] args, boolean typeCheckOnly)

    throws BeansException {

    // 组装bean名称

    final String beanName = transformedBeanName(name);

    Object bean;

    // 检查缓存,检查是否已经过早实例化了该bean

    // Eagerly check singleton cache for manually registered singletons.

    Object sharedInstance = getSingleton(beanName);

    // 如果不为空,则表示已经过早的实例化了该bean

    if (sharedInstance != null && args == null) {

    // 日志打印

    if (logger.isDebugEnabled()) {

    // Spring中使用singletonsCurrentlyInCreation Set集合来存储正在创建的单例Bean的名称

    // 如果其中包含该beanName,则表示是循环引用

    if (isSingletonCurrentlyInCreation(beanName)) {

    logger.debug("Returning eagerly cached instance of singleton bean '" + beanName +

    "' that is not fully initialized yet - a consequence of a circular reference");

    }

    else {

    logger.debug("Returning cached instance of singleton bean '" + beanName + "'");

    }

    }

    // 如果该bean是工厂bean,则返回生产后的bean

    bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);

    }

    // 如果没有过早的实例化

    else {

    // Fail if we're already creating this bean instance:

    // We're assumably within a circular reference.

    if (isPrototypeCurrentlyInCreation(beanName)) {

    throw new BeanCurrentlyInCreationException(beanName);

    }

    // 检查是否有父BeanFactory

    // Check if bean definition exists in this factory.

    BeanFactory parentBeanFactory = getParentBeanFactory();

    // 如果父BeanFactory不为空,则该Bean的Bean定义被包含在BeanFactory中

    // 则使用父BeanFactory获取该Bean,并返回创建的Bean

    // 这里实现了层次BeanFactory的能力,有点类似Java中的类加载器委托机制

    if (parentBeanFactory != null && !containsBeanDefinition(beanName)) {

    // Not found -> check parent.

    String nameToLookup = originalBeanName(name);

    if (args != null) {

    // Delegation to parent with explicit args.

    return (T) parentBeanFactory.getBean(nameToLookup, args);

    }

    else {

    // No args -> delegate to standard getBean method.

    return parentBeanFactory.getBean(nameToLookup, requiredType);

    }

    }

    // 如果父BeanFactory为空且非只仅仅类型检查,则标记该Bean正在被创建

    if (!typeCheckOnly) {

    markBeanAsCreated(beanName);

    }

    try {

    // 获取该Bean对应的RootBeanDefinition

    final RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName);

    checkMergedBeanDefinition(mbd, beanName, args);

    // Guarantee initialization of beans that the current bean depends on.

    // 获取该Bean依赖的Bean名称

    String[] dependsOn = mbd.getDependsOn();

    // 遍历获取依赖的Bean

    // 实例化该bean前,先实例化其依赖的Bean

    if (dependsOn != null) {

    for (String dep : dependsOn) {

    if (isDependent(beanName, dep)) {

    throw new BeanCreationException(mbd.getResourceDescription(), beanName,

    "Circular depends-on relationship between '" + beanName + "' and '" + dep + "'");

    }

    registerDependentBean(dep, beanName);

    try {

    getBean(dep);

    }

    catch (NoSuchBeanDefinitionException ex) {

    throw new BeanCreationException(mbd.getResourceDescription(), beanName,

    "'" + beanName + "' depends on missing bean '" + dep + "'", ex);

    }

    }

    }

    // 再根据不同的作用域创建该Bean

    // Create bean instance.

    // 这里只重点看单例Bean的创建过程,对于其他作用域类型,读者自行阅读

    // 这里就是模板方法的扩展点,createBean是定义的抽象接口,由子类扩展实现创建Bean的过程

    if (mbd.isSingleton()) {

    sharedInstance = getSingleton(beanName, new ObjectFactory() {

    @Override

    public Object getObject() throws BeansException {

    try {

    return createBean(beanName, mbd, args);

    }

    catch (BeansException ex) {

    // Explicitly remove instance from singleton cache: It might have been put there

    // eagerly by the creation process, to allow for circular reference resolution.

    // Also remove any beans that received a temporary reference to the bean.

    destroySingleton(beanName);

    throw ex;

    }

    }

    });

    bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);

    }

    else if (mbd.isPrototype()) {

    // It's a prototype -> create a new instance.

    Object prototypeInstance = null;

    try {

    beforePrototypeCreation(beanName);

    prototypeInstance = createBean(beanName, mbd, args);

    }

    finally {

    afterPrototypeCreation(beanName);

    }

    bean = getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);

    }

    else {

    String scopeName = mbd.getScope();

    final Scope scope = this.scopes.get(scopeName);

    if (scope == null) {

    throw new IllegalStateException("No Scope registered for scope name '" + scopeName + "'");

    }

    try {

    Object scopedInstance = scope.get(beanName, new ObjectFactory() {

    @Override

    public Object getObject() throws BeansException {

    beforePrototypeCreation(beanName);

    try {

    return createBean(beanName, mbd, args);

    }

    finally {

    afterPrototypeCreation(beanName);

    }

    }

    });

    bean = getObjectForBeanInstance(scopedInstance, name, beanName, mbd);

    }

    catch (IllegalStateException ex) {

    throw new BeanCreationException(beanName,

    "Scope '" + scopeName + "' is not active for the current thread; consider " +

    "defining a scoped proxy for this bean if you intend to refer to it from a singleton",

    ex);

    }

    }

    }

    catch (BeansException ex) {

    cleanupAfterBeanCreationFailure(beanName);

    throw ex;

    }

    }

    // 创建完Bean后,做类型检查,是否与要求的类型匹配,如果不匹配,则进行类型转换并返回

    // Check if required type matches the type of the actual bean instance.

    if (requiredType != null && bean != null && !requiredType.isInstance(bean)) {

    try {

    return getTypeConverter().convertIfNecessary(bean, requiredType);

    }

    catch (TypeMismatchException ex) {

    if (logger.isDebugEnabled()) {

    logger.debug("Failed to convert bean '" + name + "' to required type '" +

    ClassUtils.getQualifiedName(requiredType) + "'", ex);

    }

    throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());

    }

    }

    return (T) bean;

    }

这里有三点需要注意:

  • getSingleton,从单例缓存中获取该Bean,因为由于循环关系可能会导致过早初始化该Bean
  • markBeanAsCreated,防止Bean重复创建,当Bean准备开始创建钱,需要记录
  • getMergedLocalBeanDefinition,任何Bean都有可能存在父Bean,所以需要获取合并的Bean定义,在Spring中创建Bean时,都会将Bean定义转为RootBeanDefinition进行统一处理

createBean是子类的扩展实现Bean的创建过程,在Spring中默认由AbstractAutowireCapableBeanFactory中实现了Bean的实际创建:

@Override

protected Object createBean(String beanName, RootBeanDefinition mbd, Object[] args) throws BeanCreationException {

if (logger.isDebugEnabled()) {

logger.debug("Creating instance of bean '" + beanName + "'");

}

RootBeanDefinition mbdToUse = mbd;

// Make sure bean class is actually resolved at this point, and

// clone the bean definition in case of a dynamically resolved Class

// which cannot be stored in the shared merged bean definition.

// 解析该Bean的Class类型

Class<?> resolvedClass = resolveBeanClass(mbd, beanName);

// 如果该Bean没有BeanClass,则设置。这里深度复制,不修改原有的Bean定义

if (resolvedClass != null && !mbd.hasBeanClass() && mbd.getBeanClassName() != null) {

mbdToUse = new RootBeanDefinition(mbd);

mbdToUse.setBeanClass(resolvedClass);

}

// Prepare method overrides.

try {

mbdToUse.prepareMethodOverrides();

}

catch (BeanDefinitionValidationException ex) {

throw new BeanDefinitionStoreException(mbdToUse.getResourceDescription(),

beanName, "Validation of method overrides failed", ex);

}

try {

// 给BeanPostProcessors返回目标Bean的代理对象

// Give BeanPostProcessors a chance to return a proxy instead of the target bean instance.

Object bean = resolveBeforeInstantiation(beanName, mbdToUse);

// 如果代理对象存在,则返回

if (bean != null) {

return bean;

}

}

catch (Throwable ex) {

throw new BeanCreationException(mbdToUse.getResourceDescription(), beanName,

"BeanPostProcessor before instantiation of bean failed", ex);

}

// 如果没有代理对象,则这里创建该Bean

Object beanInstance = doCreateBean(beanName, mbdToUse, args);

if (logger.isDebugEnabled()) {

logger.debug("Finished creating instance of bean '" + beanName + "'");

}

return beanInstance;

}

这里主要逻辑是:在实例化Bean钱确保解析Bean Class,在实例化之前增加扩展点,最后调用实际的创建Bean的逻辑。

关于实例化之前的扩张点,这里不再详述,后续再介绍AOP的篇幅中再详述描述。读者也可以自行阅读InstantiationAwareBeanPostProcessor的抽象。

接下来再继续阅读创建Bean的细节doCreateBean:

protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final Object[] args)

throws BeanCreationException {

// Instantiate the bean.

// 实例化的Bean的包装器

BeanWrapper instanceWrapper = null;

if (mbd.isSingleton()) {

instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);

}

// 如果实例化的Bean的包装器是空,则创建Bean

if (instanceWrapper == null) {

instanceWrapper = createBeanInstance(beanName, mbd, args);

}

// 获取实例化的Bean

final Object bean = (instanceWrapper != null ? instanceWrapper.getWrappedInstance() : null);

Class<?> beanType = (instanceWrapper != null ? instanceWrapper.getWrappedClass() : null);

mbd.resolvedTargetType = beanType;

// 后置处理修改合并的RootBeanDefinition,笔者也没遇到过这种情形,这里忽略

// Allow post-processors to modify the merged bean definition.

synchronized (mbd.postProcessingLock) {

if (!mbd.postProcessed) {

try {

applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);

}

catch (Throwable ex) {

throw new BeanCreationException(mbd.getResourceDescription(), beanName,

"Post-processing of merged bean definition failed", ex);

}

mbd.postProcessed = true;

}

}

// 尽早缓存该Bean,以便后续循环引用时可以正常解析(循环引用时,直接从缓存中获取即可,不会再重新创建Bean)

// Eagerly cache singletons to be able to resolve circular references

// even when triggered by lifecycle interfaces like BeanFactoryAware.

boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&

isSingletonCurrentlyInCreation(beanName));

if (earlySingletonExposure) {

if (logger.isDebugEnabled()) {

logger.debug("Eagerly caching bean '" + beanName +

"' to allow for resolving potential circular references");

}

addSingletonFactory(beanName, new ObjectFactory<Object>() {

@Override

public Object getObject() throws BeansException {

return getEarlyBeanReference(beanName, mbd, bean);

}

});

}

... 省略部分是Bean装配和初始化的逻辑

// 返回创建的Bean

return exposedObject;

}

这里需要重点关注的是尽早缓存该Bean实例,主要是为了解决循环引用的问题。在下节Bean的装配中,再回到这里重点介绍。

前文中介绍到CreateBean是由子类扩展实现相应的实例化Bean的逻辑,在Spring中,这里使用回调的方式,再回到回调的点细看getSingleton方法的实现:

// 该方法是由单例注册器DefaultSingletonBeanRegistry实现,它具有缓存单例的能力

public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {

Assert.notNull(beanName, "'beanName' must not be null");

// 同步singletonObjects,保证线程安全,数据一致

// singletonObjects存储Spring容器中的所有单例Bean

synchronized (this.singletonObjects) {

// 首先从单例容器中获取该单例

Object singletonObject = this.singletonObjects.get(beanName);

// 如果单例不存在,则创建该单例Bean

if (singletonObject == null) {

// 判断该单例是否正在销毁中,如果正在销毁,则抛出异常

if (this.singletonsCurrentlyInDestruction) {

throw new BeanCreationNotAllowedException(beanName,

"Singleton bean creation not allowed while singletons of this factory are in destruction " +

"(Do not request a bean from a BeanFactory in a destroy method implementation!)");

}

if (logger.isDebugEnabled()) {

logger.debug("Creating shared instance of singleton bean '" + beanName + "'");

}

// 这里是一个扩展点,用于在创键单例钱进行回调

// 默认实现中是判断该单例是否正在创建,防重创建,其中使用Set保证唯一

beforeSingletonCreation(beanName);

// 创键是否为新的单例标志

boolean newSingleton = false;

boolean recordSuppressedExceptions = (this.suppressedExceptions == null);

if (recordSuppressedExceptions) {

this.suppressedExceptions = new LinkedHashSet<Exception>();

}

// 这里回调对象工厂创建单例,调用将回到CreateBean那里

// 并更新为新的单例的表示

try {

singletonObject = singletonFactory.getObject();

newSingleton = true;

}

catch (IllegalStateException ex) {

// Has the singleton object implicitly appeared in the meantime ->

// if yes, proceed with it since the exception indicates that state.

singletonObject = this.singletonObjects.get(beanName);

if (singletonObject == null) {

throw ex;

}

}

catch (BeanCreationException ex) {

if (recordSuppressedExceptions) {

for (Exception suppressedException : this.suppressedExceptions) {

ex.addRelatedCause(suppressedException);

}

}

throw ex;

}

finally {

if (recordSuppressedExceptions) {

this.suppressedExceptions = null;

}

// 创建单例的后置回调

afterSingletonCreation(beanName);

}

// 将新的单例存入单例容器中

if (newSingleton) {

addSingleton(beanName, singletonObject);

}

}

return (singletonObject != NULL_OBJECT ? singletonObject : null);

}

}

比较这里的单例容器和之前提到的尽早缓存单例的容器:

1.创建单例完成,将单例存入单例容器中

protected void addSingleton(String beanName, Object singletonObject) {

// 同步单例容器singletonObjects

synchronized (this.singletonObjects) {

// 存入单例,使用映射表 beanName -> singletonObject

this.singletonObjects.put(beanName, (singletonObject != null ? singletonObject : NULL_OBJECT));

// 单例已经创建完成,则清理之前的尽早缓存的单例工厂对象

this.singletonFactories.remove(beanName);

// 清理过早缓存的该单例对象

this.earlySingletonObjects.remove(beanName);

// 在已经注册的单例中,注册上该单例名称,表示该单例已经注册

this.registeredSingletons.add(beanName);

}

}

2.过早缓存单例,解决循环引用

// 如果是单例,且Spring容器允许循环引用,该bean当前正在被创建

boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&

isSingletonCurrentlyInCreation(beanName));

// 如果允许过早暴露单例

if (earlySingletonExposure) {

if (logger.isDebugEnabled()) {

logger.debug("Eagerly caching bean '" + beanName +

"' to allow for resolving potential circular references");

}

// 将单例的对象工厂缓存

addSingletonFactory(beanName, new ObjectFactory<Object>() {

@Override

public Object getObject() throws BeansException {

return getEarlyBeanReference(beanName, mbd, bean);

}

});

}

protected void addSingletonFactory(String beanName, ObjectFactory<?> singletonFactory) {

Assert.notNull(singletonFactory, "Singleton factory must not be null");

// 同步singletonObjects

synchronized (this.singletonObjects) {

// 如果singletonObjects中不包含该单例,则过早缓存

if (!this.singletonObjects.containsKey(beanName)) {

// 缓存创建这个bean对象的工厂

this.singletonFactories.put(beanName, singletonFactory);

// 从过早缓存容器中移除该bean,下次过早引用该bean时,重新从上面缓存的工厂中重新获取

this.earlySingletonObjects.remove(beanName);

// 将该bean注册到单例中

this.registeredSingletons.add(beanName);

}

}

}

// 过早获取该bean的单例,这里主要是为了解决循环引用问题

protected Object getSingleton(String beanName, boolean allowEarlyReference) {

// 首先从singletonObjects中获取,如果有直接返回

Object singletonObject = this.singletonObjects.get(beanName);

// 如果不存在,且正在创建中

if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {

// 同步singletonObjects

synchronized (this.singletonObjects) {

// 从过早缓存的容器中获取

singletonObject = this.earlySingletonObjects.get(beanName);

// 如果过早缓存的容器中也没有且支持过早引用

if (singletonObject == null && allowEarlyReference) {

// 获取上述中提到的过早缓存的工厂

ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);

// 缓存工厂不为空

if (singletonFactory != null) {

// 获取该对象,将会调用getEarlyBeanReference方法

singletonObject = singletonFactory.getObject();

// 将其缓存到过早缓存中,避免下次再使用工厂获取

this.earlySingletonObjects.put(beanName, singletonObject);

// 将该工厂存缓存中移除

this.singletonFactories.remove(beanName);

}

}

}

}

// 返回该对象

return (singletonObject != NULL_OBJECT ? singletonObject : null);

}

Spring处理循环引用的方式非常巧妙,为了帮助理解,笔者这里整理了下流程图帮助理解:

到这里Bean的创键基本上完成,后续就是依赖注入,将Bean装配起来。

Bean的装配

什么是Bean的装配,即自动解决Bean之间的相互引用,能够将其各自Set进彼此之中。比如,BeanA引用了BeanB,则Spring能自动的将连个Bean都实例化,然后将BeanB Set至BeanA中,这就是依赖注入,自动装配。

Bean的装配发生在Bean的实例化之后,在Spring中由AbstractAutowireCapableBeanFactoryBean工厂完成。继续阅读源码:

protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final Object[] args)

throws BeanCreationException {

...省略,这部分是实例化逻辑,上节中已经详解

// Initialize the bean instance.

Object exposedObject = bean;

try {

// 这里处理Bean的装配

populateBean(beanName, mbd, instanceWrapper);

if (exposedObject != null) {

这里处理Bean的初始化

exposedObject = initializeBean(beanName, exposedObject, mbd);

}

}

catch (Throwable ex) {

if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) {

throw (BeanCreationException) ex;

}

else {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);

}

}

... 省略

return exposedObject;

}

Bean的装配由populateBean中实现:

// 该实现中处理Spring中的Bean装配

// 有按照名称、按照类型两种范式装配

protected void populateBean(String beanName, RootBeanDefinition mbd, BeanWrapper bw) {

// 获取Bean定义的属性值,Bean定义的属性值代表着需要装配的成员域

PropertyValues pvs = mbd.getPropertyValues();

// 如果是空实例,则跳过返回,不装配

if (bw == null) {

if (!pvs.isEmpty()) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Cannot apply property values to null instance");

}

else {

// Skip property population phase for null instance.

return;

}

}

// 这里是一个扩展点,用于实例化后的后置处理InstantiationAwareBeanPostProcessor

// InstantiationAwareBeanPostProcessor是BeanPostProcessor的扩展实现,前文中也稍微提过

// 对于后置处理返回false,表示不需要装配,否则需要装配

// Give any InstantiationAwareBeanPostProcessors the opportunity to modify the

// state of the bean before properties are set. This can be used, for example,

// to support styles of field injection.

boolean continueWithPropertyPopulation = true;

if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {

for (BeanPostProcessor bp : getBeanPostProcessors()) {

if (bp instanceof InstantiationAwareBeanPostProcessor) {

InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;

if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {

continueWithPropertyPopulation = false;

break;

}

}

}

}

// 如果不需要按照属性装配,则直接返回

if (!continueWithPropertyPopulation) {

return;

}

// 获取Bean定义中的装配模式

if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME ||

mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) {

// 重新copy一份属性值

MutablePropertyValues newPvs = new MutablePropertyValues(pvs);

// 按照名称进行属性装配

// Add property values based on autowire by name if applicable.

if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME) {

autowireByName(beanName, mbd, bw, newPvs);

}

// 按照类型进行属性装配

// Add property values based on autowire by type if applicable.

if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) {

autowireByType(beanName, mbd, bw, newPvs);

}

pvs = newPvs;

}

// 同样是InstantiationAwareBeanPostProcessor后置处理属性值的扩展点

boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();

boolean needsDepCheck = (mbd.getDependencyCheck() != RootBeanDefinition.DEPENDENCY_CHECK_NONE);

if (hasInstAwareBpps || needsDepCheck) {

PropertyDescriptor[] filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);

if (hasInstAwareBpps) {

for (BeanPostProcessor bp : getBeanPostProcessors()) {

if (bp instanceof InstantiationAwareBeanPostProcessor) {

InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;

pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);

if (pvs == null) {

return;

}

}

}

}

if (needsDepCheck) {

checkDependencies(beanName, mbd, filteredPds, pvs);

}

}

// 应用属性值到Bean中

applyPropertyValues(beanName, mbd, bw, pvs);

}

其中非常重要的三个逻辑是:

  1. 按照名称进行属性装配
  2. 按照类型进行属性装配
  3. 应用属性值到Bean中

其次是InstantiationAwareBeanPostProcessor扩展点,它提供了实例化前后的扩展。

实例化前可以扩展实现自定义的实例化Bean逻辑;实例化后扩展可以实现自定义的装配方式。同时也提供了后置处理即将被工厂应用到Bean的属性值的扩展点。这里由于篇幅不再详述,同样在后续AOP章节中讲解。

这里围绕按照类型进行属性装配和应用属性值到Bean中做详细讲解。其中关于如何配置装配方式,这里不再赘述,可以翻阅文档。

Notes:

需要注意以上的实现中由重新复制MutablePropertyValues的操作,因为在按名称和按类型进行装配的过程中,会修改Bean定义的属性,故这里将其冲洗copy一份用于修改:将装配的值解析后,覆盖写入Bean定义属性中。

// 完成按照类型装配Bean

// 第一个参数是Bean名称、第二个参数是该Bean对应的Bean定义,第三个参数是该bean的包装对象,第四个参数是该Bean的属性值描述

protected void autowireByType(

String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {

// 获取BeanFactory中配置的自定义类型转换器,如果未配置,则使用BeanWrapper

TypeConverter converter = getCustomTypeConverter();

if (converter == null) {

converter = bw;

}

// 指定大小,创建需要自动装配的Bean名称

Set<String> autowiredBeanNames = new LinkedHashSet<String>(4);

// 从Bean的属性描述pvs中筛选出非简单的满足装配的属性名称

String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);

// 遍历需要装配的属性名称

for (String propertyName : propertyNames) {

try {

// 这里使用javabeans技术,获取属性描述器

PropertyDescriptor pd = bw.getPropertyDescriptor(propertyName);

// 如果装配的类型是Object类型,则没有任何意义,无法装配,直接迭代下一个

// Don't try autowiring by type for type Object: never makes sense,

// even if it technically is a unsatisfied, non-simple property.

// 非Object类型

if (Object.class != pd.getPropertyType()) {

// 获取该成员属性的方法参数

MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd);

// Do not allow eager init for type matching in case of a prioritized post-processor.

boolean eager = !PriorityOrdered.class.isAssignableFrom(bw.getWrappedClass());

DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager);

// 这里解析该属性成员,这里会从BeanFactory中寻找该属性的候选者,找到后,再进行实例化。返回属性对应的Bean

// 如A -> B,正在解析B,则这里将返回B

Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter);

// 将属性和候选者添加到属性值中

if (autowiredArgument != null) {

pvs.add(propertyName, autowiredArgument);

}

// 注册依赖关系,正向依赖和反向依赖

for (String autowiredBeanName : autowiredBeanNames) {

registerDependentBean(autowiredBeanName, beanName);

if (logger.isDebugEnabled()) {

logger.debug("Autowiring by type from bean name '" + beanName + "' via property '" +

propertyName + "' to bean named '" + autowiredBeanName + "'");

}

}

// 清理autowiredBeanNames,继续下一个迭代

autowiredBeanNames.clear();

}

}

catch (BeansException ex) {

throw new UnsatisfiedDependencyException(mbd.getResourceDescription(), beanName, propertyName, ex);

}

}

}

这里的逻辑和后续解析依赖的逻辑比较复杂,这里通过举例帮助理解。

假如:Bean A持有成员域B。配置如下:

public class A {

private B b;

}

<bean id="a" class=".....A" autowire="byType">

</bean>

<bean id="b" class=".....B" autowire-candidate="true">

</bean>

A自动装配方式按照类型装配,当a实例化后,在装配时,需要对b成员进行填充。那么unsatisfiedNonSimpleProperties方法返回的属性数组中将会包含"b"。

// 获取Bean的不满足非简单的属性

// 这里主要使用的是javabeans的自省技术,如果对这里感兴趣可以参考oracle java中的javabeans技术

protected String[] unsatisfiedNonSimpleProperties(AbstractBeanDefinition mbd, BeanWrapper bw) {

//

Set<String> result = new TreeSet<String>();

// 获取bean定义中的属性值

PropertyValues pvs = mbd.getPropertyValues();

// 获取该Bean实例中所有属性描述器

PropertyDescriptor[] pds = bw.getPropertyDescriptors();

// 遍历属性描述器

for (PropertyDescriptor pd : pds) {

// 属性描述器有写方法,且该属性没有被排除依赖,且bean定义的属性中不包含该属性,且非简单属性,则认为需要自动装配

if (pd.getWriteMethod() != null && !isExcludedFromDependencyCheck(pd) && !pvs.contains(pd.getName()) &&

!BeanUtils.isSimpleProperty(pd.getPropertyType())) {

result.add(pd.getName());

}

}

return StringUtils.toStringArray(result);

}

以上的b属性是满足,首先通过PropertyDescriptor[] pds = bw.getPropertyDescriptors()能获取到属性b的描述,然后b又未被排除依赖,在a的bean定义配置中也未配置b,且b是非简单属性。在Spring中认为这些属性是简单属性:

public static boolean isSimpleValueType(Class<?> clazz) {

return (ClassUtils.isPrimitiveOrWrapper(clazz) ||

Enum.class.isAssignableFrom(clazz) ||

CharSequence.class.isAssignableFrom(clazz) ||

Number.class.isAssignableFrom(clazz) ||

Date.class.isAssignableFrom(clazz) ||

URI.class == clazz || URL.class == clazz ||

Locale.class == clazz || Class.class == clazz);

}

且如果是以上这些类型的元素数组类型,也被认为是简单类型。故b是需要被自动装配。

后续便是从BeanFactory的Bean定义中寻找b的候选者:

@Override

public Object resolveDependency(DependencyDescriptor descriptor, String requestingBeanName,

Set<String> autowiredBeanNames, TypeConverter typeConverter) throws BeansException {

// 以下javaxInjectProviderClass、javaUtilOptionalClass、ObjectFactory、ObjectProvider这些都是特殊类型

// 这里不做讲解

descriptor.initParameterNameDiscovery(getParameterNameDiscoverer());

if (javaUtilOptionalClass == descriptor.getDependencyType()) {

return new OptionalDependencyFactory().createOptionalDependency(descriptor, requestingBeanName);

}

else if (ObjectFactory.class == descriptor.getDependencyType() ||

ObjectProvider.class == descriptor.getDependencyType()) {

return new DependencyObjectProvider(descriptor, requestingBeanName);

}

else if (javaxInjectProviderClass == descriptor.getDependencyType()) {

return new Jsr330ProviderFactory().createDependencyProvider(descriptor, requestingBeanName);

}

else {

// 应用配置的Bean大多数进入该分支

// 对实际依赖的惰性对象构造一个代理作为需要被装配成员实例

Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(

descriptor, requestingBeanName);

// 如果为空,则解析依赖

if (result == null) {

result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);

}

return result;

}

}

显然解析a对b的依赖,会进入最后一条分支,descriptor是b的属性描述器,requestingBeanName是a,autowiredBeanNames是包含"b",类型转换器是a实例的Bean包装器。

// 这里逻辑非常复杂,只重点关注核心逻辑

public Object doResolveDependency(DependencyDescriptor descriptor, String beanName,

Set<String> autowiredBeanNames, TypeConverter typeConverter) throws BeansException {

InjectionPoint previousInjectionPoint = ConstructorResolver.setCurrentInjectionPoint(descriptor);

try {

Object shortcut = descriptor.resolveShortcut(this);

if (shortcut != null) {

return shortcut;

}

// 根据属性描述器获取依赖对象的类型

Class<?> type = descriptor.getDependencyType();

Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor);

if (value != null) {

if (value instanceof String) {

String strVal = resolveEmbeddedValue((String) value);

BeanDefinition bd = (beanName != null && containsBean(beanName) ? getMergedBeanDefinition(beanName) : null);

value = evaluateBeanDefinitionString(strVal, bd);

}

TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());

return (descriptor.getField() != null ?

converter.convertIfNecessary(value, type, descriptor.getField()) :

converter.convertIfNecessary(value, type, descriptor.getMethodParameter()));

}

Object multipleBeans = resolveMultipleBeans(descriptor, beanName, autowiredBeanNames, typeConverter);

if (multipleBeans != null) {

return multipleBeans;

}

// 按照类型寻找bean候选者的bean名称

Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);

if (matchingBeans.isEmpty()) {

if (isRequired(descriptor)) {

raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);

}

return null;

}

// 决定候选者中的一个成为被装配的Bean

String autowiredBeanName;

Object instanceCandidate;

if (matchingBeans.size() > 1) {

autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor);

if (autowiredBeanName == null) {

if (isRequired(descriptor) || !indicatesMultipleBeans(type)) {

return descriptor.resolveNotUnique(type, matchingBeans);

}

else {

// In case of an optional Collection/Map, silently ignore a non-unique case:

// possibly it was meant to be an empty collection of multiple regular beans

// (before 4.3 in particular when we didn't even look for collection beans).

return null;

}

}

instanceCandidate = matchingBeans.get(autowiredBeanName);

}

else {

// We have exactly one match.

Map.Entry<String, Object> entry = matchingBeans.entrySet().iterator().next();

autowiredBeanName = entry.getKey();

instanceCandidate = entry.getValue();

}

if (autowiredBeanNames != null) {

autowiredBeanNames.add(autowiredBeanName);

}

// 实例化被装配的Bean并返回

return (instanceCandidate instanceof Class ?

descriptor.resolveCandidate(autowiredBeanName, type, this) : instanceCandidate);

}

finally {

ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint);

}

}

当按照类型B从BeanFactory中寻找后选择时,会寻找到"b"的bean名称,后续在实例化时,将实例化b配置的Bean。

其中descriptor.resolveCandidate实例化需要重点关注:

// 是不是很熟悉,又是调用BeanFactory的getBean,这是BeanFactory的基本能力

// 当解析依赖的时候,这里是间接递归调用

public Object resolveCandidate(String beanName, Class<?> requiredType, BeanFactory beanFactory)

throws BeansException {

return beanFactory.getBean(beanName, requiredType);

}

当解析依赖的时候,将会间接递归调用getBean方法。这里将会getBean("b", .....B)。

当解析到被装配的Bean后,就会加入至属性映射pvs中。最后再调用applyPropertyValues将属性填入。这里即将b填充至a中。

protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {

// 如果没有属性,则直接返回,无可应用

if (pvs == null || pvs.isEmpty()) {

return;

}

if (System.getSecurityManager() != null && bw instanceof BeanWrapperImpl) {

((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext());

}

MutablePropertyValues mpvs = null;

List<PropertyValue> original;

// 如果MutablePropertyValues是已经被转换,则直接短路填充

if (pvs instanceof MutablePropertyValues) {

mpvs = (MutablePropertyValues) pvs;

if (mpvs.isConverted()) {

// Shortcut: use the pre-converted values as-is.

try {

bw.setPropertyValues(mpvs);

return;

}

catch (BeansException ex) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Error setting property values", ex);

}

}

original = mpvs.getPropertyValueList();

}

else {

original = Arrays.asList(pvs.getPropertyValues());

}

// 否则获取自定义转换器

TypeConverter converter = getCustomTypeConverter();

if (converter == null) {

converter = bw;

}

// 构建Bean定义值解析器

BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter);

// Create a deep copy, resolving any references for values.

List<PropertyValue> deepCopy = new ArrayList<PropertyValue>(original.size());

boolean resolveNecessary = false;

// 遍历属性值

for (PropertyValue pv : original) {

// 如果属性值已经被转换,直接加入到列表中

if (pv.isConverted()) {

deepCopy.add(pv);

}

else {

// 获取属性名,属性值

String propertyName = pv.getName();

Object originalValue = pv.getValue();

// 解析属性值

Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue);

Object convertedValue = resolvedValue;

boolean convertible = bw.isWritableProperty(propertyName) &&

!PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName);

if (convertible) {

convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter);

}

// 避免重新装换,存入到合并的bean定义中

// Possibly store converted value in merged bean definition,

// in order to avoid re-conversion for every created bean instance.

if (resolvedValue == originalValue) {

if (convertible) {

pv.setConvertedValue(convertedValue);

}

deepCopy.add(pv);

}

else if (convertible && originalValue instanceof TypedStringValue &&

!((TypedStringValue) originalValue).isDynamic() &&

!(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) {

pv.setConvertedValue(convertedValue);

deepCopy.add(pv);

}

else {

resolveNecessary = true;

deepCopy.add(new PropertyValue(pv, convertedValue));

}

}

}

if (mpvs != null && !resolveNecessary) {

mpvs.setConverted();

}

// 填充属性值

// Set our (possibly massaged) deep copy.

try {

bw.setPropertyValues(new MutablePropertyValues(deepCopy));

}

catch (BeansException ex) {

throw new BeanCreationException(

mbd.getResourceDescription(), beanName, "Error setting property values", ex);

}

}

这里需要关注的是resolveValueIfNecessary方法。当未按照类型和名称进行自动装配时,BeanDefinitionValueResolver帮助类将会解析被包含在Bean定义中的值为实际的Bean并且将其填充到目标Bean实例中,

上述的Notes中提到有MutablePropertyValues重新copy,然后将解析的依赖值覆盖写入到属性中,这里resolveValueIfNecessary中将会抉择Bean定义属性值的类型,如果是实际待装配填充的值,则不做任何处理;否则将会根据Bean定义属性的值类型,做相应处理,具体细节这里不再赘述。

Bean的后置处理

在Bean装配完毕后,这个Bean就已经初具形态,基本上是一个完整的Bean。因为对象就是成员与行为的集合,装配即补齐其依赖的成员。这是便可以执行Bean的初始化了,但是Spring提供了扩展点,在初始化前后都为应用预留了扩张点。

上篇文章中介绍到BeanPostProcessor的容器扩展点,只是讲解了Spring上下文如何实例化和注册BeanPostProcessor,单对于BeanPostProcessor的唤醒调用没有提及,这里有了Bean创建的基础,再来看该问题。

继续源码分析,在装配完成后,开始初始化:

protected Object initializeBean(final String beanName, final Object bean, RootBeanDefinition mbd) {

// 由于部分对象可能会有访问安全控制,所以需要做权限访问

// 在初始化和后置处理前,需要处理Spring中的另一个扩展点Aware接口

if (System.getSecurityManager() != null) {

AccessController.doPrivileged(new PrivilegedAction<Object>() {

@Override

public Object run() {

// 带有权限控制,唤醒Aware接口,注入相应的Bean

invokeAwareMethods(beanName, bean);

return null;

}

}, getAccessControlContext());

}

else {

// 唤醒Aware接口,注入相应的Bean

invokeAwareMethods(beanName, bean);

}

// 初始化前的后置处理,唤醒BeanPostProcessor的applyBeanPostProcessorsBeforeInitialization

Object wrappedBean = bean;

if (mbd == null || !mbd.isSynthetic()) {

wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName);

}

try {

// 唤醒初始化方法,初始化Bean

invokeInitMethods(beanName, wrappedBean, mbd);

}

catch (Throwable ex) {

throw new BeanCreationException(

(mbd != null ? mbd.getResourceDescription() : null),

beanName, "Invocation of init method failed", ex);

}

// 初始化完成后的后置处理,唤醒BeanPostProcessor的applyBeanPostProcessorsAfterInitialization

if (mbd == null || !mbd.isSynthetic()) {

wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName);

}

return wrappedBean;

}

这里重点看前后的后置处理,至于Aware接口的处理和初始化的执行,下节再详细分析。

1.初始化前的后置处理

@Override

public Object applyBeanPostProcessorsBeforeInitialization(Object existingBean, String beanName)

throws BeansException {

// 遍历调用BeanFactory中的BeanPostProcessor,然后后置处理该Bean

Object result = existingBean;

for (BeanPostProcessor processor : getBeanPostProcessors()) {

result = processor.postProcessBeforeInitialization(result, beanName);

if (result == null) {

return result;

}

}

// 返回结果

return result;

}

2.初始化后的后置处理

@Override

public Object applyBeanPostProcessorsAfterInitialization(Object existingBean, String beanName)

throws BeansException {

// 遍历调用BeanFactory中的BeanPostProcessor后置处理初始化后的Bean

Object result = existingBean;

for (BeanPostProcessor processor : getBeanPostProcessors()) {

result = processor.postProcessAfterInitialization(result, beanName);

if (result == null) {

return result;

}

}

// 返回处理后的结果

return result;

}

Bean的初始化

上节Bean的后置处理中已经初步提及到初始化的过程:

  1. 处理Spring的Aware系列接口
  2. 初始化前的后置处理
  3. 唤醒Bean的初始化
  4. 初始化后的后置处理

1.处理Aware接口

private void invokeAwareMethods(final String beanName, final Object bean) {

// 首先如果该Bean是Aware实例

if (bean instanceof Aware) {

// 如果该bean是BeanNameAware实例

if (bean instanceof BeanNameAware) {

// 则将该Beand的beanName set进该Bean中

((BeanNameAware) bean).setBeanName(beanName);

}

// 如果该Bean是BeanClassLoaderAware实例

if (bean instanceof BeanClassLoaderAware) {

// 则将加载该Bean的类加载器set进该beanzhong

((BeanClassLoaderAware) bean).setBeanClassLoader(getBeanClassLoader());

}

// 如果该Bean是BeanFactoryAware的实例

if (bean instanceof BeanFactoryAware) {

// 则将BeanFactory set进该Bean中

((BeanFactoryAware) bean).setBeanFactory(AbstractAutowireCapableBeanFactory.this);

}

}

}

这里只处理BeanNameAware、BeanClassLoaderAware和BeanFactoryAware三个Aware接口。但是在Spring中还有很多Aware接口,如:

  • 经常使用的ApplicationContextAware接口
  • ResourceLoaderAware接口
  • MessageSourceAware接口
  • EnvironmentAware接口

等等,它们是在何处处理的?Spring中针对这些接口使用了BeanPostProcessor的方式注入相应的Bean。

以上的这些Aware接口要求注入分别是ApplicationContext,ResourceLoader,MessageSource,Environment。

但是这些都是更偏上层应用,BeanFactory属于更底层的基础组件,所以不可能依赖倒转,在BeanFactory中处理这些Aware接口,将处理这些Aware接口的依赖注入。这样势必会造成BeanFactory依赖反转,与上层的这些接口耦合,那样违背设计。

同时需要注意到的是,ApplicationContext,ResourceLoader,MessageSource,Environment这些组件都是可以通过ApplicationContext一致对外提供接口,所以只要向实现这些接口的Bean中注入ApplicationContext即可。

Spring中使用ApplicationContextAwareProcessor的BeanPostProcessor后置处理,完成ApplicationContext注入到实现以上接口的Bean中:

@Override

public Object postProcessBeforeInitialization(final Object bean, String beanName) throws BeansException {

// 后置处理注入ApplicationContext至实现了Aware接口中

// 区分访问安全权限

AccessControlContext acc = null;

if (System.getSecurityManager() != null &&

(bean instanceof EnvironmentAware || bean instanceof EmbeddedValueResolverAware ||

bean instanceof ResourceLoaderAware || bean instanceof ApplicationEventPublisherAware ||

bean instanceof MessageSourceAware || bean instanceof ApplicationContextAware)) {

acc = this.applicationContext.getBeanFactory().getAccessControlContext();

}

if (acc != null) {

AccessController.doPrivileged(new PrivilegedAction<Object>() {

@Override

public Object run() {

invokeAwareInterfaces(bean);

return null;

}

}, acc);

}

else {

invokeAwareInterfaces(bean);

}

// 返回Bean,Spring需要处理返回结果,将其注册到单例容器中

return bean;

}

// 唤醒Aware接口处理,这里处理逻辑与之前的处理Aware接口基本类似

private void invokeAwareInterfaces(Object bean) {

// 如果该Bean是Aware接口实例,则再按照不同的具体的接口,注入相应的对象进入该Bean

if (bean instanceof Aware) {

// 如果是EnvironmentAware实例,注入Environment

if (bean instanceof EnvironmentAware) {

((EnvironmentAware) bean).setEnvironment(this.applicationContext.getEnvironment());

}

// 如果是EmbeddedValueResolverAware实例,注入解析器

if (bean instanceof EmbeddedValueResolverAware) {

((EmbeddedValueResolverAware) bean).setEmbeddedValueResolver(this.embeddedValueResolver);

}

// 如果是ResourceLoaderAware实例,注入上下文

if (bean instanceof ResourceLoaderAware) {

((ResourceLoaderAware) bean).setResourceLoader(this.applicationContext);

}

// 如果是ApplicationEventPublisherAware实例,注入上下文

if (bean instanceof ApplicationEventPublisherAware) {

((ApplicationEventPublisherAware) bean).setApplicationEventPublisher(this.applicationContext);

}

// 如果是EmbeddedValueResolverAware实例,注入上下文

if (bean instanceof MessageSourceAware) {

((MessageSourceAware) bean).setMessageSource(this.applicationContext);

}

// 如果是ApplicationContextAware实例,注入上下文

if (bean instanceof ApplicationContextAware) {

((ApplicationContextAware) bean).setApplicationContext(this.applicationContext);

}

}

}

在处理完Aware接口后,就是Bean的初始化。但是Spring针对初始化做了增强处理,能够支持多种形态的初始化方式:

  • 实现了InitializingBean的方式
  • 自定义指定init-method方式
  • j2EE中定义的@PostConstruct初始化方式

下面就让我们逐个进行分析

// 该方法主要是针对Bean进行初始化

protected void invokeInitMethods(String beanName, final Object bean, RootBeanDefinition mbd)

throws Throwable {

// 判断该Bean是否为InitializingBean实例

boolean isInitializingBean = (bean instanceof InitializingBean);

// 如果是InitializingBean实例且afterPropertiesSet方法不是额外的管理初始化方法

// 则调用afterPropertiesSet方法执行Bean的初始化逻辑

if (isInitializingBean && (mbd == null || !mbd.isExternallyManagedInitMethod("afterPropertiesSet"))) {

if (logger.isDebugEnabled()) {

logger.debug("Invoking afterPropertiesSet() on bean with name '" + beanName + "'");

}

if (System.getSecurityManager() != null) {

try {

AccessController.doPrivileged(new PrivilegedExceptionAction<Object>() {

@Override

public Object run() throws Exception {

((InitializingBean) bean).afterPropertiesSet();

return null;

}

}, getAccessControlContext());

}

catch (PrivilegedActionException pae) {

throw pae.getException();

}

}

else {

((InitializingBean) bean).afterPropertiesSet();

}

}

// 如果bean定义不为空

if (mbd != null) {

// 获取Bean定义的初始化方法

String initMethodName = mbd.getInitMethodName();

// 如果初始化方法不为空,且不是isInitializingBean和afterPropertiesSet方法,则执行自定义的初始化方法

if (initMethodName != null && !(isInitializingBean && "afterPropertiesSet".equals(initMethodName)) &&

!mbd.isExternallyManagedInitMethod(initMethodName)) {

invokeCustomInitMethod(beanName, bean, mbd);

}

}

}

初始化中分为两种情况,一种是实现InitializingBean,另一种是非实现的InitializingBean。前者执行afterPropertiesSet初始化,后者执行自定义配置的initMethod进行初始化。

总结

至此Spring的Bean生命周期的大部分就讲完了,主要过程就是:

  • 实例化Bean
  • 实例化的后置处理
  • 装配Bean
  • 执行Aware接口处理
  • 初始化前的后置处理
  • 初始化Bean
  • 初始化后的后置处理
  • Bean使用阶段
  • 执行DisposableBean销毁Bean
  • 执行自定义销毁方法
  • 被GC回收

同样至此,Spring源码系列的基于XML配置的IOC也结束了,后续Spring源码分析将进入第二阶段:基于注解配置的IOC源码。

第三阶段将是Spring框架的另一个模块:Spring AOP的源码解析。

本文内容总结:前言,BeanFactory概览,Bean的实例化,Bean的装配,Bean的后置处理,Bean的初始化,总结,

原文链接:https://www.cnblogs.com/lxyit/p/10120886.html

以上是 Spring源码系列 — Bean生命周期 的全部内容, 来源链接: utcz.com/z/362450.html

回到顶部