BP神经网络原理及Python实现代码

本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。

完整的结构化代码见于:链接地址

先来说说原理

网络构造

上面是一个简单的三层网络;输入层包含节点X1 , X2;隐层包含H1,H2;输出层包含O1。

输入节点的数量要等于输入数据的变量数目。

隐层节点的数量通过经验来确定。

如果只是做分类,输出层一般一个节点就够了。

从输入到输出的过程

1.输入节点的输出等于输入,X1节点输入x1时,输出还是x1.

2. 隐层和输出层的输入I为上层输出的加权求和再加偏置,输出为f(I) , f为激活函数,可以取sigmoid。H1的输出为 sigmoid(w1x1 + w2x2 + b)

误差反向传播的过程

Python实现

构造测试数据

# -*- coding: utf-8 -*-

import numpy as np

from random import random as rdn

'''

说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示)

a1 离散型 取值 1 到 10 , 均匀分布

a2 离散型 取值 1 到 10 , 均匀分布

a3 连续型 取值 1 到 100 , 且符合正态分布

各属性之间独立。

共2个分类(0 , 1),属性值与类别之间的关系如下,

0 : a1 in [1 , 3] and a2 in [4 , 10] and a3 <= 50

1 : a1 in [1 , 3] and a2 in [4 , 10] and a3 > 50

0 : a1 in [1 , 3] and a2 in [1 , 3] and a3 > 30

1 : a1 in [1 , 3] and a2 in [1 , 3] and a3 <= 30

0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50

1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50

0 : a1 in [4 , 10] and a2 in [1 , 3] and a3 > 30

1 : a1 in [4 , 10] and a2 in [1 , 3] and a3 <= 30

'''

def genData() :

#为a3生成符合正态分布的数据

a3_data = np.random.randn(1000) * 30 + 50

data = []

for i in range(1000) :

#生成a1

a1 = int(rdn()*10) + 1

if a1 > 10 :

a1 = 10

#生成a2

a2 = int(rdn()*10) + 1

if a2 > 10 :

a2 = 10

#取a3

a3 = a3_data[i]

#计算这条数据对应的类别

c_id = 0

if a1 <= 3 and a2 >= 4 and a3 <= 50 :

c_id = 0

elif a1 <= 3 and a2 >= 4 and a3 > 50 :

c_id = 1

elif a1 <= 3 and a2 < 4 and a3 > 30 :

c_id = 0

elif a1 <= 3 and a2 < 4 and a3 <= 30 :

c_id = 1

elif a1 > 3 and a2 >= 4 and a3 <= 50 :

c_id = 0

elif a1 > 3 and a2 >= 4 and a3 > 50 :

c_id = 1

elif a1 > 3 and a2 < 4 and a3 > 30 :

c_id = 0

elif a1 > 3 and a2 < 4 and a3 <= 30 :

c_id = 1

else :

print('error')

#拼合成字串

str_line = str(i) + ',' + str(a1) + ',' + str(a2) + ',' + str(a3) + ',' + str(c_id)

data.append(str_line)

return '\n'.join(data)

激活函数

# -*- coding: utf-8 -*-

"""

Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing

"""

import numpy as np

#sigmoid函数的导数为 f(x)*(1-f(x))

def sigmoid(x) :

return 1/(1 + np.exp(-x))

网络实现

# -*- coding: utf-8 -*-

"""

Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing

"""

from activation_funcs import sigmoid

from random import random

class InputNode(object) :

def __init__(self , idx) :

self.idx = idx

self.output = None

def setInput(self , value) :

self.output = value

def getOutput(self) :

return self.output

def refreshParas(self , p1 , p2) :

pass

class Neurode(object) :

def __init__(self , layer_name , idx , input_nodes , activation_func = None , powers = None , bias = None) :

self.idx = idx

self.layer_name = layer_name

self.input_nodes = input_nodes

if activation_func is not None :

self.activation_func = activation_func

else :

#默认取 sigmoid

self.activation_func = sigmoid

if powers is not None :

self.powers = powers

else :

self.powers = [random() for i in range(len(self.input_nodes))]

if bias is not None :

self.bias = bias

else :

self.bias = random()

self.output = None

def getOutput(self) :

self.output = self.activation_func(sum(map(lambda x : x[0].getOutput()*x[1] , zip(self.input_nodes, self.powers))) + self.bias)

return self.output

def refreshParas(self , err , learn_rate) :

err_add = self.output * (1 - self.output) * err

for i in range(len(self.input_nodes)) :

#调用子节点

self.input_nodes[i].refreshParas(self.powers[i] * err_add , learn_rate)

#调节参数

power_delta = learn_rate * err_add * self.input_nodes[i].output

self.powers[i] += power_delta

bias_delta = learn_rate * err_add

self.bias += bias_delta

class SimpleBP(object) :

def __init__(self , input_node_num , hidden_layer_node_num , trainning_data , test_data) :

self.input_node_num = input_node_num

self.input_nodes = [InputNode(i) for i in range(input_node_num)]

self.hidden_layer_nodes = [Neurode('H' , i , self.input_nodes) for i in range(hidden_layer_node_num)]

self.output_node = Neurode('O' , 0 , self.hidden_layer_nodes)

self.trainning_data = trainning_data

self.test_data = test_data

#逐条训练

def trainByItem(self) :

cnt = 0

while True :

cnt += 1

learn_rate = 1.0/cnt

sum_diff = 0.0

#对于每一条训练数据进行一次训练过程

for item in self.trainning_data :

for i in range(self.input_node_num) :

self.input_nodes[i].setInput(item[i])

item_output = item[-1]

nn_output = self.output_node.getOutput()

#print('nn_output:' , nn_output)

diff = (item_output-nn_output)

sum_diff += abs(diff)

self.output_node.refreshParas(diff , learn_rate)

#print('refreshedParas')

#结束条件

print(round(sum_diff / len(self.trainning_data) , 4))

if sum_diff / len(self.trainning_data) < 0.1 :

break

def getAccuracy(self) :

cnt = 0

for item in self.test_data :

for i in range(self.input_node_num) :

self.input_nodes[i].setInput(item[i])

item_output = item[-1]

nn_output = self.output_node.getOutput()

if (nn_output > 0.5 and item_output > 0.5) or (nn_output < 0.5 and item_output < 0.5) :

cnt += 1

return cnt/(len(self.test_data) + 0.0)

主调流程

# -*- coding: utf-8 -*-

"""

Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing

"""

import os

from SimpleBP import SimpleBP

from GenData import genData

if not os.path.exists('data'):

os.makedirs('data')

#构造训练和测试数据

data_file = open('data/trainning_data.dat' , 'w')

data_file.write(genData())

data_file.close()

data_file = open('data/test_data.dat' , 'w')

data_file.write(genData())

data_file.close()

#文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id

#读取和解析训练数据

trainning_data_file = open('data/trainning_data.dat')

trainning_data = []

for line in trainning_data_file :

line = line.strip()

fld_list = line.split(',')

trainning_data.append(tuple([float(field) for field in fld_list[1:]]))

trainning_data_file.close()

#读取和解析测试数据

test_data_file = open('data/test_data.dat')

test_data = []

for line in test_data_file :

line = line.strip()

fld_list = line.split(',')

test_data.append(tuple([float(field) for field in fld_list[1:]]))

test_data_file.close()

#构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个

simple_bp = SimpleBP(3 , 10 , trainning_data , test_data)

#训练网络

simple_bp.trainByItem()

#测试分类准确率

print('Accuracy : ' , simple_bp.getAccuracy())

#训练时长比较长,准确率可以达到97%

以上是 BP神经网络原理及Python实现代码 的全部内容, 来源链接: utcz.com/z/361327.html

回到顶部