Python OpenCV处理图像之图像像素点操作

本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下

0x01. 像素

有两种直接操作图片像素点的方法:

第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值。

第二种就是使用 OpenCV 提供的 Get1D、 Get2D 等函数。

推荐使用第一种办法吧,毕竟简单。

0x02. 获取行和列像素

有一下四个函数:

  • cv.GetCol(im, 0): 返回第一列的像素
  • cv GetCols(im, 0, 10): 返回前 10 列
  • cv.GetRow(im, 0): 返回第一行
  • cv.GetRows(im, 0, 10): 返回前 10 行

0x03. 批量处理

需要批量处理所有的像素点的时候,只需要使用for循环迭代处理就可以了:

import cv2.cv as cv

im = cv.LoadImage("img/lena.jpg")

for i in range(im.height):

for j in range(im.width):

im[i,j] # 这里可以处理每个像素点

还有一种迭代处理的方式是使用 LineIterator,不过在声明 LineIterator 的时候需要制定处理像素点的开始点和结束点。

import cv2.cv as cv

im = cv.LoadImage("img/lena.jpg")

li = cv.InitLineIterator(im, (0, 0), (im.rows, im.cols)) #So loop the entire matrix

for (r, g, b) in li:

# 这里可以对每个像素点的 r g b 进行处理

娱乐一下, 随机获取 5000 个像素点,然后把颜色换成一个随机的值(salt):

import cv2.cv as cv

import random

# 这里也可以使用 Get2D/Set2D 来加载图片

im = cv.LoadImage("img/lena.jpg")

for k in range(5000): #Create 5000 noisy pixels

i = random.randint(0,im.height-1)

j = random.randint(0,im.width-1)

color = (random.randrange(256),random.randrange(256),random.randrange(256))

im[i,j] = color

cv.ShowImage("Noize", im)

cv.WaitKey(0)

效果图:

以上是 Python OpenCV处理图像之图像像素点操作 的全部内容, 来源链接: utcz.com/z/360128.html

回到顶部