Python绘图之二维图与三维图详解

各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男"

1.二维绘图

a. 一维数据集

用 Numpy ndarray 作为数据传入 ply

1.

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(1000)

y = np.random.standard_normal(10)

print "y = %s"% y

x = range(len(y))

print "x=%s"% x

plt.plot(y)

plt.show()

2.操纵坐标轴和增加网格及标签的函数

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(1000)

y = np.random.standard_normal(10)

plt.plot(y.cumsum())

plt.grid(True) ##增加格点

plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴

plt.show()

3.plt.xlim 和 plt.ylim 设置每个坐标轴的最小值和最大值

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(1000)

y = np.random.standard_normal(20)

plt.plot(y.cumsum())

plt.grid(True) ##增加格点

plt.xlim(-1,20)

plt.ylim(np.min(y.cumsum())- 1, np.max(y.cumsum()) + 1)

plt.show()

4. 添加标题和标签 plt.title, plt.xlabe, plt.ylabel 离散点, 线

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(1000)

y = np.random.standard_normal(20)

plt.figure(figsize=(7,4)) #画布大小

plt.plot(y.cumsum(),'b',lw = 1.5) # 蓝色的线

plt.plot(y.cumsum(),'ro') #离散的点

plt.grid(True)

plt.axis('tight')

plt.xlabel('index')

plt.ylabel('value')

plt.title('A simple Plot')

plt.show()

b. 二维数据集

np.random.seed(2000)

y = np.random.standard_normal((10, 2)).cumsum(axis=0) #10行2列 在这个数组上调用cumsum 计算赝本数据在0轴(即第一维)上的总和

print y

1.两个数据集绘图

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((10, 2))

plt.figure(figsize=(7,5))

plt.plot(y, lw = 1.5)

plt.plot(y, 'ro')

plt.grid(True)

plt.axis('tight')

plt.xlabel('index')

plt.ylabel('value')

plt.title('A simple plot')

plt.show()

2.添加图例 plt.legend(loc = 0)

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((10, 2))

plt.figure(figsize=(7,5))

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,1], lw = 1.5, label = '2st')

plt.plot(y, 'ro')

plt.grid(True)

plt.legend(loc = 0) #图例位置自动

plt.axis('tight')

plt.xlabel('index')

plt.ylabel('value')

plt.title('A simple plot')

plt.show()

3.使用2个 Y轴(左右)fig, ax1 = plt.subplots() ax2 = ax1.twinx()

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((10, 2))

fig, ax1 = plt.subplots() # 关键代码1 plt first data set using first (left) axis

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,0], 'ro')

plt.grid(True)

plt.legend(loc = 0) #图例位置自动

plt.axis('tight')

plt.xlabel('index')

plt.ylabel('value')

plt.title('A simple plot')

ax2 = ax1.twinx() #关键代码2 plt second data set using second(right) axis

plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')

plt.plot(y[:,1], 'ro')

plt.legend(loc = 0)

plt.ylabel('value 2nd')

plt.show()

4.使用两个子图(上下,左右)plt.subplot(211)

通过使用 plt.subplots 函数,可以直接访问底层绘图对象,例如可以用它生成和第一个子图共享 x 轴的第二个子图.

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((10, 2))

plt.figure(figsize=(7,5))

plt.subplot(211) #两行一列,第一个图

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,0], 'ro')

plt.grid(True)

plt.legend(loc = 0) #图例位置自动

plt.axis('tight')

plt.ylabel('value')

plt.title('A simple plot')

plt.subplot(212) #两行一列.第二个图

plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')

plt.plot(y[:,1], 'ro')

plt.grid(True)

plt.legend(loc = 0)

plt.xlabel('index')

plt.ylabel('value 2nd')

plt.axis('tight')

plt.show()

5.左右子图

有时候,选择两个不同的图标类型来可视化数据可能是必要的或者是理想的.利用子图方法:

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((10, 2))

plt.figure(figsize=(10,5))

plt.subplot(121) #两行一列,第一个图

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,0], 'ro')

plt.grid(True)

plt.legend(loc = 0) #图例位置自动

plt.axis('tight')

plt.xlabel('index')

plt.ylabel('value')

plt.title('1st Data Set')

plt.subplot(122)

plt.bar(np.arange(len(y)), y[:,1],width=0.5, color='g',label = '2nc')

plt.grid(True)

plt.legend(loc=0)

plt.axis('tight')

plt.xlabel('index')

plt.title('2nd Data Set')

plt.show()

c.其他绘图样式,散点图,直方图等

1.散点图

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((1000, 2))

plt.figure(figsize=(7,5))

plt.scatter(y[:,0],y[:,1],marker='o')

plt.grid(True)

plt.xlabel('1st')

plt.ylabel('2nd')

plt.title('Scatter Plot')

plt.show()

2.直方图 plt.hist

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((1000, 2))

plt.figure(figsize=(7,5))

plt.hist(y,label=['1st','2nd'],bins=25)

plt.grid(True)

plt.xlabel('value')

plt.ylabel('frequency')

plt.title('Histogram')

plt.show()

3.直方图 同一个图中堆叠

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((1000, 2))

plt.figure(figsize=(7,5))

plt.hist(y,label=['1st','2nd'],color=['b','g'],stacked=True,bins=20)

plt.grid(True)

plt.xlabel('value')

plt.ylabel('frequency')

plt.title('Histogram')

plt.show()

4.箱型图 boxplot

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((1000, 2))

fig, ax = plt.subplots(figsize=(7,4))

plt.boxplot(y)

plt.grid(True)

plt.setp(ax,xticklabels=['1st' , '2nd'])

plt.xlabel('value')

plt.ylabel('frequency')

plt.title('Histogram')

plt.show()

5.绘制函数

from matplotlib.patches import Polygon

import numpy as np

import matplotlib.pyplot as plt

#1. 定义积分函数

def func(x):

return 0.5 * np.exp(x)+1

#2.定义积分区间

a,b = 0.5, 1.5

x = np.linspace(0, 2 )

y = func(x)

#3.绘制函数图形

fig, ax = plt.subplots(figsize=(7,5))

plt.plot(x,y, 'b',linewidth=2)

plt.ylim(ymin=0)

#4.核心, 我们使用Polygon函数生成阴影部分,表示积分面积:

Ix = np.linspace(a,b)

Iy = func(Ix)

verts = [(a,0)] + list(zip(Ix, Iy))+[(b,0)]

poly = Polygon(verts,facecolor='0.7',edgecolor = '0.5')

ax.add_patch(poly)

#5.用plt.text和plt.figtext在图表上添加数学公式和一些坐标轴标签。

plt.text(0.5 *(a+b),1,r"$\int_a^b f(x)\mathrm{d}x$", horizontalalignment ='center',fontsize=20)

plt.figtext(0.9, 0.075,'$x$')

plt.figtext(0.075, 0.9, '$f(x)$')

#6. 分别设置x,y刻度标签的位置。

ax.set_xticks((a,b))

ax.set_xticklabels(('$a$','$b$'))

ax.set_yticks([func(a),func(b)])

ax.set_yticklabels(('$f(a)$','$f(b)$'))

plt.grid(True)

2.金融学图表 matplotlib.finance

1.烛柱图 candlestick

#!/etc/bin/python

#coding=utf-8

import matplotlib.pyplot as plt

import matplotlib.finance as mpf

start = (2014, 5,1)

end = (2014, 7,1)

quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)

# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))

fig.subplots_adjust(bottom = 0.2)

mpf.candlestick(ax, quotes, width=0.6, colorup='b',colordown='r')

plt.grid(True)

ax.xaxis_date() #x轴上的日期

ax.autoscale_view()

plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜

plt.show()

2. plot_day_summary

该函数提供了一个相当类似的图标类型,使用方法和 candlestick 函数相同,使用类似的参数. 这里开盘价和收盘价不是由彩色矩形表示,而是由两条短水平线表示.

#!/etc/bin/python

#coding=utf-8

import matplotlib.pyplot as plt

import matplotlib.finance as mpf

start = (2014, 5,1)

end = (2014, 7,1)

quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)

# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))

fig.subplots_adjust(bottom = 0.2)

mpf.plot_day_summary(ax, quotes, colorup='b',colordown='r')

plt.grid(True)

ax.xaxis_date() #x轴上的日期

ax.autoscale_view()

plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜

plt.show()

3.股价数据和成交量

#!/etc/bin/python

#coding=utf-8

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.finance as mpf

start = (2014, 5,1)

end = (2014, 7,1)

quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)

# print quotes[:2]

quotes = np.array(quotes)

fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(8,6))

mpf.candlestick(ax1, quotes, width=0.6,colorup='b',colordown='r')

ax1.set_title('Yahoo Inc.')

ax1.set_ylabel('index level')

ax1.grid(True)

ax1.xaxis_date()

plt.bar(quotes[:,0] - 0.25, quotes[:, 5], width=0.5)

ax2.set_ylabel('volume')

ax2.grid(True)

ax2.autoscale_view()

plt.setp(plt.gca().get_xticklabels(),rotation=30)

plt.show()

3.3D 绘图

#!/etc/bin/python

#coding=utf-8

import numpy as np

import matplotlib.pyplot as plt

stike = np.linspace(50, 150, 24)

ttm = np.linspace(0.5, 2.5, 24)

stike, ttm = np.meshgrid(stike, ttm)

print stike[:2]

iv = (stike - 100) ** 2 / (100 * stike) /ttm

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(9,6))

ax = fig.gca(projection='3d')

surf = ax.plot_surface(stike, ttm, iv, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.5, antialiased=True)

ax.set_xlabel('strike')

ax.set_ylabel('time-to-maturity')

ax.set_zlabel('implied volatility')

plt.show()

到此这篇关于Python绘图之二维图与三维图详解的文章就介绍到这了,更多相关Python绘图内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

以上是 Python绘图之二维图与三维图详解 的全部内容, 来源链接: utcz.com/z/357083.html

回到顶部