python实现textrank关键词提取

python写了一个简单版本的textrank,实现提取关键词的功能。

import numpy as np

import jieba

import jieba.posseg as pseg

class TextRank(object):

def __init__(self, sentence, window, alpha, iternum):

self.sentence = sentence

self.window = window

self.alpha = alpha

self.edge_dict = {} #记录节点的边连接字典

self.iternum = iternum#迭代次数

#对句子进行分词

def cutSentence(self):

jieba.load_userdict('user_dict.txt')

tag_filter = ['a','d','n','v']

seg_result = pseg.cut(self.sentence)

self.word_list = [s.word for s in seg_result if s.flag in tag_filter]

print(self.word_list)

#根据窗口,构建每个节点的相邻节点,返回边的集合

def createNodes(self):

tmp_list = []

word_list_len = len(self.word_list)

for index, word in enumerate(self.word_list):

if word not in self.edge_dict.keys():

tmp_list.append(word)

tmp_set = set()

left = index - self.window + 1#窗口左边界

right = index + self.window#窗口右边界

if left < 0: left = 0

if right >= word_list_len: right = word_list_len

for i in range(left, right):

if i == index:

continue

tmp_set.add(self.word_list[i])

self.edge_dict[word] = tmp_set

#根据边的相连关系,构建矩阵

def createMatrix(self):

self.matrix = np.zeros([len(set(self.word_list)), len(set(self.word_list))])

self.word_index = {}#记录词的index

self.index_dict = {}#记录节点index对应的词

for i, v in enumerate(set(self.word_list)):

self.word_index[v] = i

self.index_dict[i] = v

for key in self.edge_dict.keys():

for w in self.edge_dict[key]:

self.matrix[self.word_index[key]][self.word_index[w]] = 1

self.matrix[self.word_index[w]][self.word_index[key]] = 1

#归一化

for j in range(self.matrix.shape[1]):

sum = 0

for i in range(self.matrix.shape[0]):

sum += self.matrix[i][j]

for i in range(self.matrix.shape[0]):

self.matrix[i][j] /= sum

#根据textrank公式计算权重

def calPR(self):

self.PR = np.ones([len(set(self.word_list)), 1])

for i in range(self.iternum):

self.PR = (1 - self.alpha) + self.alpha * np.dot(self.matrix, self.PR)

#输出词和相应的权重

def printResult(self):

word_pr = {}

for i in range(len(self.PR)):

word_pr[self.index_dict[i]] = self.PR[i][0]

res = sorted(word_pr.items(), key = lambda x : x[1], reverse=True)

print(res)

if __name__ == '__main__':

s = '程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。'

tr = TextRank(s, 3, 0.85, 700)

tr.cutSentence()

tr.createNodes()

tr.createMatrix()

tr.calPR()

tr.printResult()

以上是 python实现textrank关键词提取 的全部内容, 来源链接: utcz.com/z/356977.html

回到顶部