Python OpenCV中的numpy与图像类型转换操作

Python OpenCV存储图像使用的是Numpy存储,所以可以将Numpy当做图像类型操作,操作之前还需进行类型转换,转换到int8类型

import cv2

import numpy as np

# 使用numpy方式创建一个二维数组

img = np.ones((100,100))

# 转换成int8类型

img = np.int8(img)

# 颜色空间转换,单通道转换成多通道, 可选可不选

img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

cv2.imwrite("demo.jpg", img)

补充知识:Python中读取图片并转化为numpy.ndarray()数据的6种方式

方式:                                        返回类型

OpenCV                                      np.ndarray

PIL                                               PIL.JpegImagePlugin.JpegImageFile

keras.preprocessing.image         PIL.JpegImagePlugin.JpegImageFile

Skimage.io                                  np.ndarray

matplotlib.pyplot                          np.ndarray

matplotlib.image                          np.ndarray

import numpy as np

import cv2

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

from PIL import Image

import skimage.io as io

import matplotlib.pyplot as plt

import matplotlib.image as mpig

'''

方式: 返回类型

OpenCV np.ndarray

PIL PIL.JpegImagePlugin.JpegImageFile

keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile

Skimage.io np.ndarray

matplotlib.pyplot np.ndarray

matplotlib.image np.ndarray

'''

imagePath="E:/DataSet/test1/trainSet/bus/300.jpg"

'''

方式一:使用OpenCV

'''

img1=cv2.imread(imagePath)

print("img1:",img1.shape)

print("img1:",type(img1))

print("-"*10)

'''

方式二:使用PIL

'''

img2=Image.open(imagePath)

print("img2:",img2)

print("img2:",type(img2))

#转换成np.ndarray格式

img2=np.array(img2)

print("img2:",img2.shape)

print("img2:",type(img2))

print("-"*10)

'''

方式三:使用keras.preprocessing.image

'''

img3=load_img(imagePath)

print("img3:",img3)

print("img3:",type(img3))

#转换成np.ndarray格式,使用np.array(),或者使用keras里的img_to_array()

#使用np.array()

#img3=np.array(img2)

#使用keras里的img_to_array()

img3=img_to_array(img3)

print("img3:",img3.shape)

print("img3:",type(img3))

print("-"*10)

'''

方式四:使用Skimage.io

'''

img4=io.imread(imagePath)

print("img4:",img4.shape)

print("img4:",type(img4))

print("-"*10)

'''

方式五:使用matplotlib.pyplot

'''

img5=plt.imread(imagePath)

print("img5:",img5.shape)

print("img5:",type(img5))

print("-"*10)

'''

方式六:使用matplotlib.image

'''

img6=mpig.imread(imagePath)

print("img6:",img6.shape)

print("img6:",type(img6))

print("-"*10)

运行结果:

Using TensorFlow backend.

img1: (256, 384, 3)

img1: <class 'numpy.ndarray'>

----------

img2: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x256 at 0x249608A8C50>

img2: <class 'PIL.JpegImagePlugin.JpegImageFile'>

img2: (256, 384, 3)

img2: <class 'numpy.ndarray'>

----------

img3: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x256 at 0x2496B5A23C8>

img3: <class 'PIL.JpegImagePlugin.JpegImageFile'>

img3: (256, 384, 3)

img3: <class 'numpy.ndarray'>

----------

img4: (256, 384, 3)

img4: <class 'numpy.ndarray'>

----------

img5: (256, 384, 3)

img5: <class 'numpy.ndarray'>

----------

img6: (256, 384, 3)

img6: <class 'numpy.ndarray'>

----------

以上这篇Python OpenCV中的numpy与图像类型转换操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Python OpenCV中的numpy与图像类型转换操作 的全部内容, 来源链接: utcz.com/z/356853.html

回到顶部