python实现求特征选择的信息增益

使用python语言,实现求特征选择的信息增益,可以同时满足特征中有连续型和二值离散型属性的情况。

师兄让我做一个特征选择的代码,我在网上找了一下,大部分都是用来求离散型属性的信息益益,但是我的数据是同时包含二值离散型和连续型属性的,所以这里实现了一下。

代码块

import numpy as np

import math

class IG():

def __init__(self,X,y):

X = np.array(X)

n_feature = np.shape(X)[1]

n_y = len(y)

orig_H = 0

for i in set(y):

orig_H += -(y.count(i)/n_y)*math.log(y.count(i)/n_y)

condi_H_list = []

for i in range(n_feature):

feature = X[:,i]

sourted_feature = sorted(feature)

threshold = [(sourted_feature[inde-1]+sourted_feature[inde])/2 for inde in range(len(feature)) if inde != 0 ]

thre_set = set(threshold)

if float(max(feature)) in thre_set:

thre_set.remove(float(max(feature)))

if min(feature) in thre_set:

thre_set.remove(min(feature))

pre_H = 0

for thre in thre_set:

lower = [y[s] for s in range(len(feature)) if feature[s] < thre]

highter = [y[s] for s in range(len(feature)) if feature[s] > thre]

H_l = 0

for l in set(lower):

H_l += -(lower.count(l) / len(lower))*math.log(lower.count(l) / len(lower))

H_h = 0

for h in set(highter):

H_h += -(highter.count(h) / len(highter))*math.log(highter.count(h) / len(highter))

temp_condi_H = len(lower)/n_y *H_l+ len(highter)/n_y * H_h

condi_H = orig_H - temp_condi_H

pre_H = max(pre_H,condi_H)

condi_H_list.append(pre_H)

self.IG = condi_H_list

def getIG(self):

return self.IG

if __name__ == "__main__":

X = [[1, 0, 0, 1],

[0, 1, 1, 1],

[0, 0, 1, 0]]

y = [0, 0, 1]

print(IG(X,y).getIG())

输出结果为:

[0.17441604792151594, 0.17441604792151594, 0.17441604792151594, 0.6365141682948128]

以上是 python实现求特征选择的信息增益 的全部内容, 来源链接: utcz.com/z/354658.html

回到顶部