Python使用Tkinter实现机器人走迷宫

这本是课程的一个作业研究搜索算法,当时研究了一下Tkinter,然后写了个很简单的机器人走迷宫的界面,并且使用了各种搜索算法来进行搜索,如下图:

使用A*寻找最优路径:

由于时间关系,不分析了,我自己贴代码吧。希望对一些也要用Tkinter的人有帮助。

from Tkinter import *

from random import *

import time

import numpy as np

import util

class Directions:

NORTH = 'North'

SOUTH = 'South'

EAST = 'East'

WEST = 'West'

# Detect elements in the map

window = Tk()

window.title('CityBusPlanner')

window.resizable(0,0)

width = 25

(x, y) = (22, 22)

totalsteps = 0

buidings = [(0, 0), (1, 0), (2, 0), (3, 0), (7, 0), (8, 0), (11, 0), (12, 0), (13, 0),

(17, 0), (18, 0), (21, 0), (21, 1), (2, 2), (5, 2), (8, 2), (9, 2), (12, 2),

(14, 2), (15, 2), (16, 2), (17, 2), (21, 2), (2, 3), (4, 3), (5, 3), (7, 3),

(8, 3), (11, 3), (17, 3), (18, 3), (19, 3), (2, 4), (4, 4), (5, 4), (8, 4),

(9, 4), (14, 4), (15, 4),(17, 4), (18, 4), (19, 4), (0, 6), (2, 6), (4, 6),

(7, 6), (8, 6), (11, 6), (12, 6), (14, 6), (15, 6),(16, 6), (18, 6), (19, 6),

(2, 7), (5, 7), (21, 7), (0, 8), (2, 8), (11, 8), (14, 8), (15, 8), (17, 8),

(18, 8), (21, 8), (4, 9), (5, 9), (7, 9), (9, 9), (11, 9), (14, 9), (21, 9),

(2, 10), (7, 10), (14, 10), (17, 10), (19, 10), (0, 11), (2, 11), (4, 11),

(5, 11), (7, 11), (8, 11), (9, 11), (11, 11), (12, 11), (14, 11), (15, 11),

(16, 11), (17, 11), (18, 11), (19, 11), (0, 13), (2, 13), (3, 13), (5, 13),

(7, 13), (8, 13), (9, 13), (14, 13), (17, 13), (18, 13), (21, 13), (2, 14),

(3, 14), (5, 14), (7, 14),(9, 14), (12, 14), (14, 14), (15, 14), (17, 14),

(18, 14), (21, 14), (2, 15), (3, 15), (5, 15), (7, 15), (9, 15), (12, 15),

(15, 15), (19, 15), (21, 15), (0, 16), (21, 16), (0, 17), (3, 17), (5, 17),

(7, 17),(9, 17), (11, 17), (14, 17), (15, 17), (17, 17), (18, 17), (21, 17),

(2, 18), (3, 18), (5, 18), (7, 18),(9, 18), (11, 18), (14, 18), (17, 18),

(18, 18), (3, 19), (5, 19), (7, 19), (9, 19), (11, 19), (12, 19), (14, 19),

(17, 19), (18, 19), (0, 21), (1, 21), (2, 21), (5, 21), (6, 21), (9, 21),

(10, 21), (11, 21), (12, 21), (15, 21), (16, 21), (18, 21), (19, 21), (21, 21)]

walls = [(10, 0), (0, 12), (21, 12), (14, 21)]

park = [(14, 0), (15, 0), (16, 0)]

robotPos = (21, 12)

view = Canvas(window, width=x * width, height=y * width)

view.grid(row=0, column=0)

searchMapButton = Button(window,text = 'search')

searchMapButton.grid(row = 0,column = 1)

robotView = Canvas(window,width=x * width, height=y * width)

robotView.grid(row = 0,column = 2)

def formatColor(r, g, b):

return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))

def cityMap():

global width, x, y, buidings,walls,park,robot

for i in range(x):

for j in range(y):

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='white', outline='gray', width=1)

for (i, j) in buidings:

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', outline='gray', width=1)

for (i,j) in walls:

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='blue', outline='gray', width=1)

for (i,j) in park:

view.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='red', outline='gray', width=1)

def robotCityMap():

global width, x, y, buidings,walls,park,robot,robotPos

for i in range(x):

for j in range(y):

robotView.create_rectangle(

i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', width=1)

robotView.create_rectangle(

robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)

# Create City Map

cityMap()

# Create Robot View

robotCityMap()

# Create a robot

robot = view.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,

robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")

robotSelf = robotView.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,

robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")

visited = [robotPos]

def move(dx,dy):

global robot,x,y,robotPos,robotSelf,view

global totalsteps

totalsteps = totalsteps + 1

newX = robotPos[0] + dx

newY = robotPos[1] + dy

if (not isEdge(newX, newY)) and (not isBlock(newX, newY)):

#print "move %d" % totalsteps

view.coords(robot, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,

(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)

robotView.coords(robotSelf, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,

(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)

robotPos = (newX, newY)

if robotPos not in visited:

visited.append(robotPos)

visitedPanel = robotView.create_rectangle(

robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)

robotView.tag_lower(visitedPanel,robotSelf)

else:

print "move error"

def callUp(event):

move(0,-1)

def callDown(event):

move(0, 1)

def callLeft(event):

move(-1, 0)

def callRight(event):

move(1, 0)

def isBlock(newX,newY):

global buidings,x,y

for (i,j) in buidings:

if (i == newX) and (j == newY):

return True

return False

def isEdge(newX,newY):

global x,y

if newX >= x or newY >= y or newX < 0 or newY < 0 :

return True

return False

def getSuccessors(robotPos):

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

successors = []

posX = robotPos[0]

posY = robotPos[1]

if not isBlock(posX - 1, posY) and not isEdge(posX - 1,posY):

successors.append(w)

if not isBlock(posX, posY + 1) and not isEdge(posX,posY + 1):

successors.append(s)

if not isBlock(posX + 1, posY) and not isEdge(posX + 1,posY):

successors.append(e)

if not isBlock(posX, posY -1) and not isEdge(posX,posY - 1):

successors.append(n)

return successors

def getNewPostion(position,action):

posX = position[0]

posY = position[1]

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

if action == n:

return (posX,posY - 1)

elif action == w:

return (posX - 1,posY)

elif action == s:

return (posX,posY + 1)

elif action == e:

return (posX + 1,posY)

delay = False

def runAction(actions):

global delay

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

for i in actions:

if delay:

time.sleep(0.05)

if i == n:

#print "North"

move(0, -1)

elif i == w:

#print "West"

move(-1, 0)

elif i == s:

#print "South"

move(0, 1)

elif i == e:

#sprint "East"

move(1, 0)

view.update()

def searchMapTest(event):

global robotPos

actions = []

position = robotPos

for i in range(100):

successors = getSuccessors(position)

successor = successors[randint(0, len(successors) - 1)]

actions.append(successor)

position = getNewPostion(position, successor)

print actions

runAction(actions)

def reverseSuccessor(successor):

n = Directions.NORTH

w = Directions.WEST

s = Directions.SOUTH

e = Directions.EAST

if successor == n:

return s

elif successor == w:

return e

elif successor == s:

return n

elif successor == e:

return w

roads = set()

detectedBuildings = {}

blockColors = {}

blockIndex = 0

def updateBuildings(detectedBuildings):

global robotView,width

for block,buildings in detectedBuildings.items():

color = blockColors[block]

for building in buildings:

robotView.create_rectangle(

building[0] * width, building[1] * width, (building[0] + 1) * width, (building[1] + 1) * width, fill=color, outline=color, width=1)

def addBuilding(position):

global blockIndex,detectedBuildings

isAdd = False

addBlock = ''

for block,buildings in detectedBuildings.items():

for building in buildings:

if building == position:

return

if util.manhattanDistance(position, building) == 1:

if not isAdd:

buildings.add(position)

isAdd = True

addBlock = block

break

else:

#merge two block

for building in detectedBuildings[block]:

detectedBuildings[addBlock].add(building)

detectedBuildings.pop(block)

if not isAdd:

newBlock = set([position])

blockIndex = blockIndex + 1

detectedBuildings['Block %d' % blockIndex] = newBlock

color = formatColor(random(), random(), random())

blockColors['Block %d' % blockIndex] = color

updateBuildings(detectedBuildings)

def addRoad(position):

global robotView,width,robotSelf

visitedPanel = robotView.create_rectangle(

position[0] * width, position[1] * width, (position[0] + 1) * width, (position[1] + 1) * width, fill='white', outline='gray', width=1)

robotView.tag_lower(visitedPanel,robotSelf)

def showPath(positionA,positionB,path):

global robotView,width,view

view.create_oval(positionA[0] * width + width * 3 / 10, positionA[1] * width + width * 3 / 10,

positionA[0] * width + width * 7 / 10, positionA[1] * width + width * 7 / 10, fill='yellow', width=1)

nextPosition = positionA

for action in path:

nextPosition = getNewPostion(nextPosition, action)

view.create_oval(nextPosition[0] * width + width * 4 / 10, nextPosition[1] * width + width * 4 / 10,

nextPosition[0] * width + width * 6 / 10, nextPosition[1] * width + width * 6 / 10, fill='yellow', width=1)

view.create_oval(positionB[0] * width + width * 3 / 10, positionB[1] * width + width * 3 / 10,

positionB[0] * width + width * 7 / 10, positionB[1] * width + width * 7 / 10, fill='yellow', width=1)

hasDetected = set()

def detectLocation(position):

if position not in hasDetected:

hasDetected.add(position)

if isBlock(position[0],position[1]):

addBuilding(position)

elif not isEdge(position[0],position[1]):

addRoad(position)

def detect(position):

posX = position[0]

posY = position[1]

detectLocation((posX,posY + 1))

detectLocation((posX,posY - 1))

detectLocation((posX + 1,posY))

detectLocation((posX - 1,posY))

def heuristic(positionA,positionB):

return util.manhattanDistance(positionA,positionB)

def AstarSearch(positionA,positionB):

"Step 1: define closed: a set"

closed = set()

"Step 2: define fringe: a PriorityQueue "

fringe = util.PriorityQueue()

"Step 3: insert initial node to fringe"

"Construct node to be a tuple (location,actions)"

initialNode = (positionA,[])

initCost = 0 + heuristic(initialNode[0],positionB)

fringe.push(initialNode,initCost)

"Step 4: Loop to do search"

while not fringe.isEmpty():

node = fringe.pop()

if node[0] == positionB:

return node[1]

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

newPosition = getNewPostion(node[0], successor)

childNode = (newPosition,actions)

cost = len(actions) + heuristic(childNode[0],positionB)

fringe.push(childNode,cost)

return []

def AstarSearchBetweenbuildings(building1,building2):

"Step 1: define closed: a set"

closed = set()

"Step 2: define fringe: a PriorityQueue "

fringe = util.PriorityQueue()

"Step 3: insert initial node to fringe"

"Construct node to be a tuple (location,actions)"

initialNode = (building1,[])

initCost = 0 + heuristic(initialNode[0],building2)

fringe.push(initialNode,initCost)

"Step 4: Loop to do search"

while not fringe.isEmpty():

node = fringe.pop()

if util.manhattanDistance(node[0],building2) == 1:

return node[1]

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

newPosition = getNewPostion(node[0], successor)

childNode = (newPosition,actions)

cost = len(actions) + heuristic(childNode[0],building2)

fringe.push(childNode,cost)

return []

def calculatePositions(buildingA,path):

positions = set()

positions.add(buildingA)

nextPosition = buildingA

for action in path:

nextPosition = getNewPostion(nextPosition, action)

positions.add(nextPosition)

return positions

def showRoad(fullRoad):

global view,width

for road in fullRoad:

view.create_oval(road[0] * width + width * 4 / 10, road[1] * width + width * 4 / 10,

road[0] * width + width * 6 / 10, road[1] * width + width * 6 / 10, fill='yellow', width=1)

view.update()

def search(node):

successors = getSuccessors(node[0])

detect(node[0])

for successor in successors:

nextPosition = getNewPostion(node[0], successor)

if nextPosition not in roads:

runAction([successor]) # to the next node

roads.add(nextPosition)

search((nextPosition,[successor],[reverseSuccessor(successor)]))

runAction(node[2]) #back to top node

def searchConsiderTopVisit(node,topWillVisit):

successors = getSuccessors(node[0])

detect(node[0])

newTopWillVisit = set(topWillVisit)

for successor in successors:

nextPosition = getNewPostion(node[0], successor)

newTopWillVisit.add(nextPosition)

for successor in successors:

nextPosition = getNewPostion(node[0], successor)

if nextPosition not in roads and nextPosition not in topWillVisit:

runAction([successor]) # to the next node

roads.add(nextPosition)

newTopWillVisit.remove(nextPosition)

searchConsiderTopVisit((nextPosition,[successor],[reverseSuccessor(successor)]),newTopWillVisit)

runAction(node[2]) #back to top node

def searchShortestPathBetweenBlocks(block1,block2):

shortestPath = []

buildingA = (0,0)

buildingB = (0,0)

for building1 in block1:

for building2 in block2:

path = AstarSearchBetweenbuildings(building1, building2)

if len(shortestPath) == 0:

shortestPath = path

buildingA = building1

buildingB = building2

elif len(path) < len(shortestPath):

shortestPath = path

buildingA = building1

buildingB = building2

return (buildingA,buildingB,shortestPath)

def addBuildingToBlocks(linkedBlock,buildingA):

global detectedBuildings

newLinkedBlock = linkedBlock.copy()

for block,buildings in detectedBuildings.items():

for building in buildings:

if util.manhattanDistance(buildingA, building) == 1:

newLinkedBlock[block] = buildings

break

return newLinkedBlock

def bfsSearchNextBlock(initBuilding,linkedBlock):

global detectedBuildings

closed = set()

fringe = util.Queue()

initNode = (initBuilding,[])

fringe.push(initNode)

while not fringe.isEmpty():

node = fringe.pop()

newLinkedBlock = addBuildingToBlocks(linkedBlock,node[0])

if len(newLinkedBlock) == len(detectedBuildings):

return node[1]

if len(newLinkedBlock) > len(linkedBlock): # find a new block

actions = list(node[1])

'''

if len(node[1]) > 0:

lastAction = node[1][len(node[1]) - 1]

for successor in getSuccessors(node[0]):

if successor == lastAction:

nextPosition = getNewPostion(node[0], successor)

actions.append(successor)

return actions + bfsSearchNextBlock(nextPosition, newLinkedBlock)

'''

return node[1] + bfsSearchNextBlock(node[0], newLinkedBlock)

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

nextPosition = getNewPostion(node[0], successor)

childNode = (nextPosition,actions)

fringe.push(childNode)

return []

def isGoal(node):

global detectedBuildings,robotPos

linkedBlock = {}

positions = calculatePositions(robotPos, node[1])

for position in positions:

for block,buildings in detectedBuildings.items():

for building in buildings:

if util.manhattanDistance(position, building) == 1:

linkedBlock[block] = buildings

print len(linkedBlock)

if len(linkedBlock) == 17:

return True

else:

return False

def roadHeuristic(road):

return 0

def AstarSearchRoad():

global robotPos,detectedBuildings

"Step 1: define closed: a set"

closed = set()

"Step 2: define fringe: a PriorityQueue "

fringe = util.PriorityQueue()

"Step 3: insert initial node to fringe"

"Construct node to be a tuple (location,actions)"

initRoad = (robotPos,[])

initCost = 0 + roadHeuristic(initRoad)

fringe.push(initRoad,initCost)

"Step 4: Loop to do search"

while not fringe.isEmpty():

node = fringe.pop()

if isGoal(node):

print len(closed)

return node[1]

if node[0] not in closed:

closed.add(node[0])

for successor in getSuccessors(node[0]):

actions = list(node[1])

actions.append(successor)

newPosition = getNewPostion(node[0], successor)

childNode = (newPosition,actions)

cost = len(actions) + roadHeuristic(childNode)

fringe.push(childNode,cost)

return []

def searchRoad(building):

global detectedBuildings,robotPos

linkedBlock = {}

initBuilding = building

return bfsSearchNextBlock(initBuilding,linkedBlock)

def searchShortestRoad():

shortestRoad = []

shortestPositions = set()

for block,buildings in detectedBuildings.items():

for building in buildings:

road = searchRoad(building)

positions = calculatePositions(building, road)

if len(shortestPositions) == 0 or len(positions) < len(shortestPositions):

shortestRoad = road

shortestPositions = positions

print len(shortestPositions)

showRoad(shortestPositions)

def searchMap(event):

print "Search Map"

global robotPos,roads,detectedBuildings,delay

actions = []

#roads = set()s

#roads.add(robotPos)

#fringe = util.Stack()

initNode = (robotPos,[],[]) # (position,forwardActions,backwarsdActions)

#fringe.push(initNode)

roads.add(robotPos)

search(initNode)

#searchConsiderTopVisit(initNode, set())

print detectedBuildings

print len(detectedBuildings)

#path = AstarSearchBetweenbuildings((6,21), (2, 18))

#showPath((6,21),(2,18), path)

'''

shortestRoad = set()

for block1 in detectedBuildings.values():

roads = set()

for block2 in detectedBuildings.values():

if not block1 == block2:

(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)

#showPath(buildingA,buildingB,path)

positions = calculatePositions(buildingA,buildingB,path)

roads = roads | positions

if len(shortestRoad) == 0 or len(roads) < len(shortestRoad):

shortestRoad = roads

print len(shortestRoad)

showRoad(shortestRoad)

'''

'''

block1 = detectedBuildings.values()[3]

print block1

block2 = detectedBuildings.values()[5]

print block2

(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)

print buildingA,buildingB,path

showPath(buildingA,buildingB,path)

block1 = detectedBuildings.values()[10]

print block1

block2 = detectedBuildings.values()[20]

print block2

(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)

print buildingA,buildingB,path

showPath(buildingA,buildingB,path)

'''

searchShortestRoad()

'''

path = searchRoad()

#path = AstarSearchRoad()

positions = calculatePositions(robotPos, path)

print len(positions)

showRoad(positions)

delay = True

#runAction(path)

'''

window.bind("<Up>", callUp)

window.bind("<Down>", callDown)

window.bind("<Right>", callRight)

window.bind("<Left>", callLeft)

window.bind("s", searchMap)

searchMapButton.bind("<Button-1>",searchMap)

window.mainloop()

下面的util.py使用的是加州伯克利的代码:

# util.py

# -------

# Licensing Information: You are free to use or extend these projects for

# educational purposes provided that (1) you do not distribute or publish

# solutions, (2) you retain this notice, and (3) you provide clear

# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.

#

# Attribution Information: The Pacman AI projects were developed at UC Berkeley.

# The core projects and autograders were primarily created by John DeNero

# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).

# Student side autograding was added by Brad Miller, Nick Hay, and

# Pieter Abbeel (pabbeel@cs.berkeley.edu).

import sys

import inspect

import heapq, random

"""

Data structures useful for implementing SearchAgents

"""

class Stack:

"A container with a last-in-first-out (LIFO) queuing policy."

def __init__(self):

self.list = []

def push(self,item):

"Push 'item' onto the stack"

self.list.append(item)

def pop(self):

"Pop the most recently pushed item from the stack"

return self.list.pop()

def isEmpty(self):

"Returns true if the stack is empty"

return len(self.list) == 0

class Queue:

"A container with a first-in-first-out (FIFO) queuing policy."

def __init__(self):

self.list = []

def push(self,item):

"Enqueue the 'item' into the queue"

self.list.insert(0,item)

def pop(self):

"""

Dequeue the earliest enqueued item still in the queue. This

operation removes the item from the queue.

"""

return self.list.pop()

def isEmpty(self):

"Returns true if the queue is empty"

return len(self.list) == 0

class PriorityQueue:

"""

Implements a priority queue data structure. Each inserted item

has a priority associated with it and the client is usually interested

in quick retrieval of the lowest-priority item in the queue. This

data structure allows O(1) access to the lowest-priority item.

Note that this PriorityQueue does not allow you to change the priority

of an item. However, you may insert the same item multiple times with

different priorities.

"""

def __init__(self):

self.heap = []

self.count = 0

def push(self, item, priority):

# FIXME: restored old behaviour to check against old results better

# FIXED: restored to stable behaviour

entry = (priority, self.count, item)

# entry = (priority, item)

heapq.heappush(self.heap, entry)

self.count += 1

def pop(self):

(_, _, item) = heapq.heappop(self.heap)

# (_, item) = heapq.heappop(self.heap)

return item

def isEmpty(self):

return len(self.heap) == 0

class PriorityQueueWithFunction(PriorityQueue):

"""

Implements a priority queue with the same push/pop signature of the

Queue and the Stack classes. This is designed for drop-in replacement for

those two classes. The caller has to provide a priority function, which

extracts each item's priority.

"""

def __init__(self, priorityFunction):

"priorityFunction (item) -> priority"

self.priorityFunction = priorityFunction # store the priority function

PriorityQueue.__init__(self) # super-class initializer

def push(self, item):

"Adds an item to the queue with priority from the priority function"

PriorityQueue.push(self, item, self.priorityFunction(item))

def manhattanDistance( xy1, xy2 ):

"Returns the Manhattan distance between points xy1 and xy2"

return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )

以上是 Python使用Tkinter实现机器人走迷宫 的全部内容, 来源链接: utcz.com/z/353131.html

回到顶部