基于python plotly交互式图表大全

plotly可以制作交互式图表,直接上代码:

import plotly.offline as py

from plotly.graph_objs import Scatter, Layout

import plotly.graph_objs as go

py.init_notebook_mode(connected=True)

import pandas as pd

import numpy as np

In [412]:

#读取数据

df=pd.read_csv('seaborn.csv',sep=',',encoding='utf-8',index_col=0)

#展示数据

df.head()

Out[412]:

NameType 1Type 2TotalHPAttackDefenseSp. AtkSp. DefSpeedStageLegendary
#
1BulbasaurGrassPoison3184549496565451False
2IvysaurGrassPoison4056062638080602False
3VenusaurGrassPoison525808283100100803False
4CharmanderFireNaN3093952436050651False
5CharmeleonFireNaN4055864588065802False

In [413]:

#plotly折线图,trace就代表折现的条数

trace1=go.Scatter(x=df['Attack'],y=df['Defense'])

trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2])

trace2=go.Scatter(x=[1,2,3,4,5],y=[2,1,4,6,7])

py.iplot([trace1,trace2])

#填充区域

trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2],fill="tonexty",fillcolor="#FF0")

py.iplot([trace1])

# 散点图

trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2],mode='markers')

trace1=go.Scatter(x=df['Attack'],y=df['Defense'],mode='markers')

py.iplot([trace1],filename='basic-scatter')

#气泡图

x=df['Attack']

y=df['Defense']

colors = np.random.rand(len(x))#set color equal to a variable

sz =df['Defense']

fig = go.Figure()

fig.add_scatter(x=x,y=y,mode='markers',marker={'size': sz,'color': colors,'opacity': 0.7,'colorscale': 'Viridis','showscale': True})

py.iplot(fig)

#bar 柱状图

df1=df[['Name','Defense']].sort_values(['Defense'],ascending=[0])

data = [go.Bar(x=df1['Name'],y=df1['Defense'])]

py.iplot(data, filename='jupyter-basic_bar')

#组合bar group

trace1 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[20, 14, 23],name='SF Zoo')

trace2 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[12, 18, 29],name='LA Zoo')

data = [trace1, trace2]

layout = go.Layout( barmode='group')

fig = go.Figure(data=data, layout=layout)

py.iplot(fig, filename='grouped-bar')

#组合bar gstack上下组合

trace1 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[20, 14, 23],name='SF Zoo')

trace2 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[12, 18, 29],name='LA Zoo',text=[12, 18, 29],textposition = 'auto')

data = [trace1, trace2]

layout = go.Layout( barmode='stack')

fig = go.Figure(data=data, layout=layout)

py.iplot(fig, filename='grouped-bar')

#饼图

fig = {

"data": [

{

"values": df['Defense'][0:3],

"labels": df['Name'][0:3],

"domain": {"x": [0,1]},

"name": "GHG Emissions",

"hoverinfo":"label+percent+name",

"hole": .4,

"type": "pie"

}

],

"layout": {

"title":"Global Emissions 1990-2011",

"annotations": [

{

"font": {"size": 20},

"showarrow": False,

"text": "GHG",

"x": 0.5,

"y": 0.5

}

]

}

}

py.iplot(fig, filename='donut')

# Learn about API authentication here: https://plot.ly/pandas/getting-started

# Find your api_key here: https://plot.ly/settings/api

#雷达图

data = [

go.Scatterpolar(

r = [39, 28, 8, 7, 28, 39],

theta = ['A','B','C', 'D', 'E', 'A'],

fill = 'toself',

name = 'Group A'

),

go.Scatterpolar(

r = [1.5, 10, 39, 31, 15, 1.5],

theta = ['A','B','C', 'D', 'E', 'A'],

fill = 'toself',

name = 'Group B'

)

]

layout = go.Layout(

polar = dict(

radialaxis = dict(

visible = True,

range = [0, 50]

)

),

showlegend = False

)

fig = go.Figure(data=data, layout=layout)

py.iplot(fig, filename = "radar/multiple")

#box 箱子图

df_box=df[['HP','Attack','Defense','Speed']]

data = []

for col in df_box.columns:

data.append(go.Box(y=df_box[col], name=col, showlegend=True ) )

#data.append( go.Scatter(x= df_box.columns, y=df.mean(), mode='lines', name='mean' ) )

py.iplot(data, filename='pandas-box-plot')

#箱子图加平均线

df_box=df[['HP','Attack','Defense','Speed']]

data = []

for col in df_box.columns:

data.append(go.Box(y=df_box[col], name=col, showlegend=True) )

data.append( go.Scatter(x= df_box.columns, y=df.mean(), mode='lines', name='mean' ) )

py.iplot(data, filename='pandas-box-plot')

#Basic Horizontal Bar Chart 条形图 plotly条形图

df_hb=df[['Name','Attack','Defense','Speed']][0:5].sort_values(['Attack'],ascending=[1])

data = [

go.Bar(

y=df_hb['Name'], # assign x as the dataframe column 'x'

x=df_hb['Attack'],

orientation='h',

text=df_hb['Attack'],

textposition = 'auto'

)

]

py.iplot(data, filename='pandas-horizontal-bar')

#直方图Histogram

data = [go.Histogram(x=df['Attack'])]

py.iplot(data, filename='basic histogram')

#distplot

import plotly.figure_factory as ff

hist_data =[df['Defense']]

group_labels = ['distplot']

fig = ff.create_distplot(hist_data, group_labels)

# Add title

fig['layout'].update(title='Hist and Rug Plot',xaxis=dict(range=[0,200]))

py.iplot(fig, filename='Basic Distplot')

# Add histogram data

x1 = np.random.randn(200)-2

x2 = np.random.randn(200)

x3 = np.random.randn(200)+2

x4 = np.random.randn(200)+4

# Group data together

hist_data = [x1, x2, x3, x4]

group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']

# Create distplot with custom bin_size

fig = ff.create_distplot(hist_data, group_labels,)

# Plot!

py.iplot(fig, filename='Distplot with Multiple Datasets')

好了,以上就是我研究的plotly,欢迎朋友们评论,补充,一起学习!

以上这篇基于python plotly交互式图表大全就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 基于python plotly交互式图表大全 的全部内容, 来源链接: utcz.com/z/349418.html

回到顶部