基于随机梯度下降的矩阵分解推荐算法(python)

SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A、B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M。

矩阵分解推荐的思想就是基于此,将每个user和item的内在feature构成的矩阵分别表示为M1与M2,则内在feature的乘积得到M;因此我们可以利用已有数据(user对item的打分)通过随机梯度下降的方法计算出现有user和item最可能的feature对应到的M1与M2(相当于得到每个user和每个item的内在属性),这样就可以得到通过feature之间的内积得到user没有打过分的item的分数。

本文所采用的数据是movielens中的数据,且自行切割成了train和test,但是由于数据量较大,没有用到全部数据。

代码如下:

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 9 19:33:00 2017

@author: wjw

"""

import pandas as pd

import numpy as np

import os

def difference(left,right,on): #求两个dataframe的差集

df = pd.merge(left,right,how='left',on=on) #参数on指的是用于连接的列索引名称

left_columns = left.columns

col_y = df.columns[-1] # 得到最后一列

df = df[df[col_y].isnull()]#得到boolean的list

df = df.iloc[:,0:left_columns.size]#得到的数据里面还有其他同列名的column

df.columns = left_columns # 重新定义columns

return df

def readfile(filepath): #读取文件,同时得到训练集和测试集

pwd = os.getcwd()#返回当前工程的工作目录

os.chdir(os.path.dirname(filepath))

#os.path.dirname()获得filepath文件的目录;chdir()切换到filepath目录下

initialData = pd.read_csv(os.path.basename(filepath))

#basename()获取指定目录的相对路径

os.chdir(pwd)#回到先前工作目录下

predData = initialData.iloc[:,0:3] #将最后一列数据去掉

newIndexData = predData.drop_duplicates()

trainData = newIndexData.sample(axis=0,frac = 0.1) #90%的数据作为训练集

testData = difference(newIndexData,trainData,['userId','movieId']).sample(axis=0,frac=0.1)

return trainData,testData

def getmodel(train):

slowRate = 0.99

preRmse = 10000000.0

max_iter = 100

features = 3

lamda = 0.2

gama = 0.01 #随机梯度下降中加入,防止更新过度

user = pd.DataFrame(train.userId.drop_duplicates(),columns=['userId']).reset_index(drop=True) #把在原来dataFrame中的索引重新设置,drop=True并抛弃

movie = pd.DataFrame(train.movieId.drop_duplicates(),columns=['movieId']).reset_index(drop=True)

userNum = user.count().loc['userId'] #671

movieNum = movie.count().loc['movieId']

userFeatures = np.random.rand(userNum,features) #构造user和movie的特征向量集合

movieFeatures = np.random.rand(movieNum,features)

#假设每个user和每个movie有3个feature

userFeaturesFrame =user.join(pd.DataFrame(userFeatures,columns = ['f1','f2','f3']))

movieFeaturesFrame =movie.join(pd.DataFrame(movieFeatures,columns= ['f1','f2','f3']))

userFeaturesFrame = userFeaturesFrame.set_index('userId')

movieFeaturesFrame = movieFeaturesFrame.set_index('movieId') #重新设置index

for i in range(max_iter):

rmse = 0

n = 0

for index,row in user.iterrows():

uId = row.userId

userFeature = userFeaturesFrame.loc[uId] #得到userFeatureFrame中对应uId的feature

u_m = train[train['userId'] == uId] #找到在train中userId点评过的movieId的data

for index,row in u_m.iterrows():

u_mId = int(row.movieId)

realRating = row.rating

movieFeature = movieFeaturesFrame.loc[u_mId]

eui = realRating-np.dot(userFeature,movieFeature)

rmse += pow(eui,2)

n += 1

userFeaturesFrame.loc[uId] += gama * (eui*movieFeature-lamda*userFeature)

movieFeaturesFrame.loc[u_mId] += gama*(eui*userFeature-lamda*movieFeature)

nowRmse = np.sqrt(rmse*1.0/n)

print('step:%f,rmse:%f'%((i+1),nowRmse))

if nowRmse<preRmse:

preRmse = nowRmse

elif nowRmse<0.5:

break

elif nowRmse-preRmse<=0.001:

break

gama*=slowRate

return userFeaturesFrame,movieFeaturesFrame

def evaluate(userFeaturesFrame,movieFeaturesFrame,test):

test['predictRating']='NAN' # 新增一列

for index,row in test.iterrows():

print(index)

userId = row.userId

movieId = row.movieId

if userId not in userFeaturesFrame.index or movieId not in movieFeaturesFrame.index:

continue

userFeature = userFeaturesFrame.loc[userId]

movieFeature = movieFeaturesFrame.loc[movieId]

test.loc[index,'predictRating'] = np.dot(userFeature,movieFeature) #不定位到不能修改值

return test

if __name__ == "__main__":

filepath = r"E:\学习\研究生\推荐系统\ml-latest-small\ratings.csv"

train,test = readfile(filepath)

userFeaturesFrame,movieFeaturesFrame = getmodel(train)

result = evaluate(userFeaturesFrame,movieFeaturesFrame,test)

在test中得到的结果为:

NAN则是训练集中没有的数据

以上是 基于随机梯度下降的矩阵分解推荐算法(python) 的全部内容, 来源链接: utcz.com/z/348176.html

回到顶部