神经网络(BP)算法Python实现及应用

本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下

首先用Python实现简单地神经网络算法:

import numpy as np

# 定义tanh函数

def tanh(x):

return np.tanh(x)

# tanh函数的导数

def tan_deriv(x):

return 1.0 - np.tanh(x) * np.tan(x)

# sigmoid函数

def logistic(x):

return 1 / (1 + np.exp(-x))

# sigmoid函数的导数

def logistic_derivative(x):

return logistic(x) * (1 - logistic(x))

class NeuralNetwork:

def __init__(self, layers, activation='tanh'):

"""

神经网络算法构造函数

:param layers: 神经元层数

:param activation: 使用的函数(默认tanh函数)

:return:none

"""

if activation == 'logistic':

self.activation = logistic

self.activation_deriv = logistic_derivative

elif activation == 'tanh':

self.activation = tanh

self.activation_deriv = tan_deriv

# 权重列表

self.weights = []

# 初始化权重(随机)

for i in range(1, len(layers) - 1):

self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25)

self.weights.append((2 * np.random.random((layers[i] + 1, layers[i + 1])) - 1) * 0.25)

def fit(self, X, y, learning_rate=0.2, epochs=10000):

"""

训练神经网络

:param X: 数据集(通常是二维)

:param y: 分类标记

:param learning_rate: 学习率(默认0.2)

:param epochs: 训练次数(最大循环次数,默认10000)

:return: none

"""

# 确保数据集是二维的

X = np.atleast_2d(X)

temp = np.ones([X.shape[0], X.shape[1] + 1])

temp[:, 0: -1] = X

X = temp

y = np.array(y)

for k in range(epochs):

# 随机抽取X的一行

i = np.random.randint(X.shape[0])

# 用随机抽取的这一组数据对神经网络更新

a = [X[i]]

# 正向更新

for l in range(len(self.weights)):

a.append(self.activation(np.dot(a[l], self.weights[l])))

error = y[i] - a[-1]

deltas = [error * self.activation_deriv(a[-1])]

# 反向更新

for l in range(len(a) - 2, 0, -1):

deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l]))

deltas.reverse()

for i in range(len(self.weights)):

layer = np.atleast_2d(a[i])

delta = np.atleast_2d(deltas[i])

self.weights[i] += learning_rate * layer.T.dot(delta)

def predict(self, x):

x = np.array(x)

temp = np.ones(x.shape[0] + 1)

temp[0:-1] = x

a = temp

for l in range(0, len(self.weights)):

a = self.activation(np.dot(a, self.weights[l]))

return a

使用自己定义的神经网络算法实现一些简单的功能:

 小案例:

X:                  Y

0 0                 0

0 1                 1

1 0                 1

1 1                 0

from NN.NeuralNetwork import NeuralNetwork

import numpy as np

nn = NeuralNetwork([2, 2, 1], 'tanh')

temp = [[0, 0], [0, 1], [1, 0], [1, 1]]

X = np.array(temp)

y = np.array([0, 1, 1, 0])

nn.fit(X, y)

for i in temp:

print(i, nn.predict(i))

发现结果基本机制,无限接近0或者无限接近1 

第二个例子:识别图片中的数字

导入数据:

from sklearn.datasets import load_digits

import pylab as pl

digits = load_digits()

print(digits.data.shape)

pl.gray()

pl.matshow(digits.images[0])

pl.show()

观察下:大小:(1797, 64)

数字0

接下来的代码是识别它们:

import numpy as np

from sklearn.datasets import load_digits

from sklearn.metrics import confusion_matrix, classification_report

from sklearn.preprocessing import LabelBinarizer

from NN.NeuralNetwork import NeuralNetwork

from sklearn.cross_validation import train_test_split

# 加载数据集

digits = load_digits()

X = digits.data

y = digits.target

# 处理数据,使得数据处于0,1之间,满足神经网络算法的要求

X -= X.min()

X /= X.max()

# 层数:

# 输出层10个数字

# 输入层64因为图片是8*8的,64像素

# 隐藏层假设100

nn = NeuralNetwork([64, 100, 10], 'logistic')

# 分隔训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y)

# 转化成sklearn需要的二维数据类型

labels_train = LabelBinarizer().fit_transform(y_train)

labels_test = LabelBinarizer().fit_transform(y_test)

print("start fitting")

# 训练3000次

nn.fit(X_train, labels_train, epochs=3000)

predictions = []

for i in range(X_test.shape[0]):

o = nn.predict(X_test[i])

# np.argmax:第几个数对应最大概率值

predictions.append(np.argmax(o))

# 打印预测相关信息

print(confusion_matrix(y_test, predictions))

print(classification_report(y_test, predictions))

结果:

矩阵对角线代表预测正确的数量,发现正确率很多

这张表更直观地显示出预测正确率:

共450个案例,成功率94%

以上是 神经网络(BP)算法Python实现及应用 的全部内容, 来源链接: utcz.com/z/346495.html

回到顶部