python SVM 线性分类模型的实现

运行环境:win10 64位 py 3.6 pycharm 2018.1.1

导入对应的包和数据

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets,linear_model,cross_validation,svm

def load_data_regression():

diabetes = datasets.load_diabetes()

return cross_validation.train_test_split(diabetes,diabetes.target,test_size=0.25,random_state=0)

def load_data_classfication():

iris = datasets.load_iris()

X_train = iris.data

y_train = iris.target

return cross_validation.train_test_split(X_train,y_train,test_size=0.25,random_state=0,stratify=y_train)

#线性分类SVM

def test_LinearSVC(*data):

X_train,X_test,y_train,y_test = data

cls = svm.LinearSVC()

cls.fit(X_train,y_train)

print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))

print('Score:%.2f'%cls.score(X_test,y_test))

X_train,X_test,y_train,y_test = load_data_classfication()

test_LinearSVC(X_train,X_test,y_train,y_test)

def test_LinearSVC_loss(*data):

X_train,X_test,y_train,y_test = data

losses = ['hinge','squared_hinge']

for loss in losses:

cls = svm.LinearSVC(loss=loss)

cls.fit(X_train,y_train)

print('loss:%s'%loss)

print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))

print('Score:%.2f'%cls.score(X_test,y_test))

X_train,X_test,y_train,y_test = load_data_classfication()

test_LinearSVC_loss(X_train,X_test,y_train,y_test)

#考察罚项形式的影响

def test_LinearSVC_L12(*data):

X_train,X_test,y_train,y_test = data

L12 = ['l1','l2']

for p in L12:

cls = svm.LinearSVC(penalty=p,dual=False)

cls.fit(X_train,y_train)

print('penalty:%s'%p)

print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))

print('Score:%.2f'%cls.score(X_test,y_test))

X_train,X_test,y_train,y_test = load_data_classfication()

test_LinearSVC_L12(X_train,X_test,y_train,y_test)

#考察罚项系数C的影响

def test_LinearSVC_C(*data):

X_train,X_test,y_train,y_test = data

Cs = np.logspace(-2,1)

train_scores = []

test_scores = []

for C in Cs:

cls = svm.LinearSVC(C=C)

cls.fit(X_train,y_train)

train_scores.append(cls.score(X_train,y_train))

test_scores.append(cls.score(X_test,y_test))

fig = plt.figure()

ax = fig.add_subplot(1,1,1)

ax.plot(Cs,train_scores,label = 'Training score')

ax.plot(Cs,test_scores,label = 'Testing score')

ax.set_xlabel(r'C')

ax.set_xscale('log')

ax.set_ylabel(r'score')

ax.set_title('LinearSVC')

ax.legend(loc='best')

plt.show()

X_train,X_test,y_train,y_test = load_data_classfication()

test_LinearSVC_C(X_train,X_test,y_train,y_test)

#非线性分类SVM

#线性核

def test_SVC_linear(*data):

X_train, X_test, y_train, y_test = data

cls = svm.SVC(kernel='linear')

cls.fit(X_train,y_train)

print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))

print('Score:%.2f'%cls.score(X_test,y_test))

X_train,X_test,y_train,y_test = load_data_classfication()

test_SVC_linear(X_train,X_test,y_train,y_test)

#考察高斯核

def test_SVC_rbf(*data):

X_train, X_test, y_train, y_test = data

###测试gamm###

gamms = range(1, 20)

train_scores = []

test_scores = []

for gamm in gamms:

cls = svm.SVC(kernel='rbf', gamma=gamm)

cls.fit(X_train, y_train)

train_scores.append(cls.score(X_train, y_train))

test_scores.append(cls.score(X_test, y_test))

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(gamms, train_scores, label='Training score', marker='+')

ax.plot(gamms, test_scores, label='Testing score', marker='o')

ax.set_xlabel(r'$\gamma$')

ax.set_ylabel(r'score')

ax.set_ylim(0, 1.05)

ax.set_title('SVC_rbf')

ax.legend(loc='best')

plt.show()

X_train,X_test,y_train,y_test = load_data_classfication()

test_SVC_rbf(X_train,X_test,y_train,y_test)

#考察sigmoid核

def test_SVC_sigmod(*data):

X_train, X_test, y_train, y_test = data

fig = plt.figure()

###测试gamm###

gamms = np.logspace(-2, 1)

train_scores = []

test_scores = []

for gamm in gamms:

cls = svm.SVC(kernel='sigmoid',gamma=gamm,coef0=0)

cls.fit(X_train, y_train)

train_scores.append(cls.score(X_train, y_train))

test_scores.append(cls.score(X_test, y_test))

ax = fig.add_subplot(1, 2, 1)

ax.plot(gamms, train_scores, label='Training score', marker='+')

ax.plot(gamms, test_scores, label='Testing score', marker='o')

ax.set_xlabel(r'$\gamma$')

ax.set_ylabel(r'score')

ax.set_xscale('log')

ax.set_ylim(0, 1.05)

ax.set_title('SVC_sigmoid_gamm')

ax.legend(loc='best')

#测试r

rs = np.linspace(0,5)

train_scores = []

test_scores = []

for r in rs:

cls = svm.SVC(kernel='sigmoid', gamma=0.01, coef0=r)

cls.fit(X_train, y_train)

train_scores.append(cls.score(X_train, y_train))

test_scores.append(cls.score(X_test, y_test))

ax = fig.add_subplot(1, 2, 2)

ax.plot(rs, train_scores, label='Training score', marker='+')

ax.plot(rs, test_scores, label='Testing score', marker='o')

ax.set_xlabel(r'r')

ax.set_ylabel(r'score')

ax.set_ylim(0, 1.05)

ax.set_title('SVC_sigmoid_r')

ax.legend(loc='best')

plt.show()

X_train,X_test,y_train,y_test = load_data_classfication()

test_SVC_sigmod(X_train,X_test,y_train,y_test)

以上是 python SVM 线性分类模型的实现 的全部内容, 来源链接: utcz.com/z/346211.html

回到顶部