python环形单链表的约瑟夫问题详解

题目:

一个环形单链表,从头结点开始向后,指针每移动一个结点,就计数加1,当数到第m个节点时,就把该结点删除,然后继续从下一个节点开始从1计数,循环往复,直到环形单链表中只剩下了一个结点,返回该结点。

这个问题就是著名的约瑟夫问题。

代码:

首先给出环形单链表的数据结构:

class Node(object):

def __init__(self, value, next=0):

self.value = value

self.next = next # 指针

class RingLinkedList(object):

# 链表的数据结构

def __init__(self):

self.head = 0 # 头部

def __getitem__(self, key):

if self.is_empty():

print 'Linked list is empty.'

return

elif key < 0 or key > self.get_length():

print 'The given key is wrong.'

return

else:

return self.get_elem(key)

def __setitem__(self, key, value):

if self.is_empty():

print 'Linked list is empty.'

return

elif key < 0 or key > self.get_length():

print 'The given key is wrong.'

return

else:

return self.set_elem(key, value)

def init_list(self, data): # 按列表给出 data

self.head = Node(data[0])

p = self.head # 指针指向头结点

for i in data[1:]:

p.next = Node(i) # 确定指针指向下一个结点

p = p.next # 指针滑动向下一个位置

p.next = self.head

def get_length(self):

p, length = self.head, 0

while p != 0:

length += 1

p = p.next

if p == self.head:

break

return length

def is_empty(self):

if self.head == 0:

return True

else:

return False

def insert_node(self, index, value):

length = self.get_length()

if index < 0 or index > length:

print 'Can not insert node into the linked list.'

elif index == 0:

temp = self.head

self.head = Node(value, temp)

p = self.head

for _ in xrange(0, length):

p = p.next

print "p.value", p.value

p.next = self.head

elif index == length:

elem = self.get_elem(length-1)

elem.next = Node(value)

elem.next.next = self.head

else:

p, post = self.head, self.head

for i in xrange(index):

post = p

p = p.next

temp = p

post.next = Node(value, temp)

def delete_node(self, index):

if index < 0 or index > self.get_length()-1:

print "Wrong index number to delete any node."

elif self.is_empty():

print "No node can be deleted."

elif index == 0:

tail = self.get_elem(self.get_length()-1)

temp = self.head

self.head = temp.next

tail.next = self.head

elif index == self.get_length()-1:

p = self.head

for i in xrange(self.get_length()-2):

p = p.next

p.next = self.head

else:

p = self.head

for i in xrange(index-1):

p = p.next

p.next = p.next.next

def show_linked_list(self): # 打印链表中的所有元素

if self.is_empty():

print 'This is an empty linked list.'

else:

p, container = self.head, []

for _ in xrange(self.get_length()-1): #

container.append(p.value)

p = p.next

container.append(p.value)

print container

def clear_linked_list(self): # 将链表置空

p = self.head

for _ in xrange(0, self.get_length()-1):

post = p

p = p.next

del post

self.head = 0

def get_elem(self, index):

if self.is_empty():

print "The linked list is empty. Can not get element."

elif index < 0 or index > self.get_length()-1:

print "Wrong index number to get any element."

else:

p = self.head

for _ in xrange(index):

p = p.next

return p

def set_elem(self, index, value):

if self.is_empty():

print "The linked list is empty. Can not set element."

elif index < 0 or index > self.get_length()-1:

print "Wrong index number to set element."

else:

p = self.head

for _ in xrange(index):

p = p.next

p.value = value

def get_index(self, value):

p = self.head

for i in xrange(self.get_length()):

if p.value == value:

return i

else:

p = p.next

return -1

然后给出约瑟夫算法:

def josephus_kill_1(head, m):

'''

环形单链表,使用 RingLinkedList 数据结构,约瑟夫问题。

:param head:给定一个环形单链表的头结点,和第m个节点被杀死

:return:返回最终剩下的那个结点

本方法比较笨拙,就是按照规定的路子进行寻找,时间复杂度为o(m*len(ringlinkedlist))

'''

if head == 0:

print "This is an empty ring linked list."

return head

if m < 2:

print "Wrong m number to play this game."

return head

p = head

while p.next != p:

for _ in xrange(0, m-1):

post = p

p = p.next

#print post.next.value

post.next = post.next.next

p = post.next

return p

分析:

我采用了最原始的方法来解决这个问题,时间复杂度为o(m*len(ringlinkedlist))。

但是实际上,如果确定了链表的长度以及要删除的步长,那么最终剩余的结点一定是固定的,所以这就是一个固定的函数,我们只需要根剧M和N确定索引就可以了,这个函数涉及到了数论,具体我就不细写了。

以上是 python环形单链表的约瑟夫问题详解 的全部内容, 来源链接: utcz.com/z/344501.html

回到顶部