C#计算矩阵的逆矩阵方法实例分析

本文实例讲述了C#计算矩阵的逆矩阵方法。分享给大家供大家参考。具体如下:

1.代码思路

1)对矩阵进行合法性检查:矩阵必须为方阵

2)计算矩阵行列式的值(Determinant函数)

3)只有满秩矩阵才有逆矩阵,因此如果行列式的值为0(在代码中以绝对值小于1E-6做判断),则终止函数,报出异常

4)求出伴随矩阵(AdjointMatrix函数)

5)逆矩阵各元素即其伴随矩阵各元素除以矩阵行列式的商

2.函数代码

(注:本段代码只实现了一个思路,可能并不是该问题的最优解)

/// <summary>

/// 求矩阵的逆矩阵

/// </summary>

/// <param name="matrix"></param>

/// <returns></returns>

public static double[][] InverseMatrix(double[][] matrix)

{

//matrix必须为非空

if (matrix == null || matrix.Length == 0)

{

return new double[][] { };

}

//matrix 必须为方阵

int len = matrix.Length;

for (int counter = 0; counter < matrix.Length; counter++)

{

if (matrix[counter].Length != len)

{

throw new Exception("matrix 必须为方阵");

}

}

//计算矩阵行列式的值

double dDeterminant = Determinant(matrix);

if (Math.Abs(dDeterminant) <= 1E-6)

{

throw new Exception("矩阵不可逆");

}

//制作一个伴随矩阵大小的矩阵

double[][] result = AdjointMatrix(matrix);

//矩阵的每项除以矩阵行列式的值,即为所求

for (int i = 0; i < matrix.Length; i++)

{

for (int j = 0; j < matrix.Length; j++)

{

result[i][j] = result[i][j] / dDeterminant;

}

}

return result;

}

/// <summary>

/// 递归计算行列式的值

/// </summary>

/// <param name="matrix">矩阵</param>

/// <returns></returns>

public static double Determinant(double[][] matrix)

{

//二阶及以下行列式直接计算

if (matrix.Length == 0) return 0;

else if (matrix.Length == 1) return matrix[0][0];

else if (matrix.Length == 2)

{

return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];

}

//对第一行使用“加边法”递归计算行列式的值

double dSum = 0, dSign = 1;

for (int i = 0; i < matrix.Length; i++)

{

double[][] matrixTemp = new double[matrix.Length - 1][];

for (int count = 0; count < matrix.Length - 1; count++)

{

matrixTemp[count] = new double[matrix.Length - 1];

}

for (int j = 0; j < matrixTemp.Length; j++)

{

for (int k = 0; k < matrixTemp.Length; k++)

{

matrixTemp[j][k] = matrix[j + 1][k >= i ? k + 1 : k];

}

}

dSum += (matrix[0][i] * dSign * Determinant(matrixTemp));

dSign = dSign * -1;

}

return dSum;

}

/// <summary>

/// 计算方阵的伴随矩阵

/// </summary>

/// <param name="matrix">方阵</param>

/// <returns></returns>

public static double[][] AdjointMatrix(double [][] matrix)

{

//制作一个伴随矩阵大小的矩阵

double[][] result = new double[matrix.Length][];

for (int i = 0; i < result.Length; i++)

{

result[i] = new double[matrix[i].Length];

}

//生成伴随矩阵

for (int i = 0; i < result.Length; i++)

{

for (int j = 0; j < result.Length; j++)

{

//存储代数余子式的矩阵(行、列数都比原矩阵少1)

double[][] temp = new double[result.Length - 1][];

for (int k = 0; k < result.Length - 1; k++)

{

temp[k] = new double[result[k].Length - 1];

}

//生成代数余子式

for (int x = 0; x < temp.Length; x++)

{

for (int y = 0; y < temp.Length; y++)

{

temp[x][y] = matrix[x < i ? x : x + 1][y < j ? y : y + 1];

}

}

//Console.WriteLine("代数余子式:");

//PrintMatrix(temp);

result[j][i] = ((i + j) % 2 == 0 ? 1 : -1) * Determinant(temp);

}

}

//Console.WriteLine("伴随矩阵:");

//PrintMatrix(result);

return result;

}

/// <summary>

/// 打印矩阵

/// </summary>

/// <param name="matrix">待打印矩阵</param>

private static void PrintMatrix(double[][] matrix, string title = "")

{

//1.标题值为空则不显示标题

if (!String.IsNullOrWhiteSpace(title))

{

Console.WriteLine(title);

}

//2.打印矩阵

for (int i = 0; i < matrix.Length; i++)

{

for (int j = 0; j < matrix[i].Length; j++)

{

Console.Write(matrix[i][j] + "\t");

//注意不能写为:Console.Write(matrix[i][j] + '\t');

}

Console.WriteLine();

}

//3.空行

Console.WriteLine();

}

3.Main函数调用

static void Main(string[] args)

{

double[][] matrix = new double[][]

{

new double[] { 1, 2, 3 },

new double[] { 2, 2, 1 },

new double[] { 3, 4, 3 }

};

PrintMatrix(matrix, "原矩阵");

PrintMatrix(AdjointMatrix(matrix), "伴随矩阵");

Console.WriteLine("行列式的值为:" + Determinant(matrix) + '\n');

PrintMatrix(InverseMatrix(matrix), "逆矩阵");

Console.ReadLine();

}

4.执行结果

希望本文所述对大家的C#程序设计有所帮助。

以上是 C#计算矩阵的逆矩阵方法实例分析 的全部内容, 来源链接: utcz.com/z/342968.html

回到顶部