Python中生成器和迭代器的区别详解
Python中生成器和迭代器的区别(代码在Python3.5下测试):
Num01–>迭代器
定义:
对于list、string、tuple、dict等这些容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数。iter()是python内置函数。
iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素。next()也是python内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。
迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的_next_方法(Python3中是对象的_next_方法,Python2中是对象的next()方法)。所以,我们要想构造一个迭代器,就要实现它的_next_方法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现_iter_方法,而_iter_方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的_iter_方法返回自身self即可。
一些术语的解释:
1,迭代器协议:对象需要提供next()方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代。
2,可迭代对象:实现了迭代器协议对象。list、tuple、dict都是Iterable(可迭代对象),但不是Iterator(迭代器对象)。但可以使用内建函数iter() ,把这些都变成Iterable(可迭代器对象)。
3,for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束
Python自带容器对象案例:
# 随便定义一个list
listArray=[1,2,3]
# 使用iter()函数
iterName=iter(listArray)
print(iterName)
# 结果如下:是一个列表list的迭代器
# <list_iterator object at 0x0000017B0D984278>
print(next(iterName))
print(next(iterName))
print(next(iterName))
print(next(iterName))#没有迭代到下一个元素,直接抛出异常
# 1
# 2
# 3
# Traceback (most recent call last):
# File "Test07.py", line 32, in <module>
# StopIteration
Python中一个实现了_iter_方法和_next_方法的类对象,就是迭代器,如下案例是计算菲波那切数列的案例
class Fib(object):
def __init__(self, max):
super(Fib, self).__init__()
self.max = max
def __iter__(self):
self.a = 0
self.b = 1
return self
def __next__(self):
fib = self.a
if fib > self.max:
raise StopIteration
self.a, self.b = self.b, self.a + self.b
return fib
# 定义一个main函数,循环遍历每一个菲波那切数
def main():
# 20以内的数
fib = Fib(20)
for i in fib:
print(i)
# 测试
if __name__ == '__main__':
main()
解释说明:
在本类的实现中,定义了一个_iter_(self)方法,这个方法是在for循环遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter() ,由iter()通过调用_iter_(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的_next_(self)方法对迭代器对象进行遍历。所以要实现_iter_(self)和_next_(self)这两个方法。
而且因为实现了_next_(self)方法,所以在实现_iter_(self)的时候,直接返回self就可以。
总结一句话就是:
在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的_iter_(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的_next_(self) 。
注意点: _iter_(self)只会被调用一次,而_next_(self)会被调用 n 次,直到出现StopIteration异常。
Num02–>生成器
作用:
>延迟操作。也就是在需要的时候才产生结果,不是立即产生结果。
注意事项:
>生成器是只能遍历一次的。
>生成器是一类特殊的迭代器。
分类:
第一类:生成器函数:还是使用 def 定义函数,但是,使用yield而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行。
如下案例加以说明:
# 菲波那切数列
def Fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return '亲!没有数据了...'
# 调用方法,生成出10个数来
f=Fib(10)
# 使用一个循环捕获最后return 返回的值,保存在异常StopIteration的value中
while True:
try:
x=next(f)
print("f:",x)
except StopIteration as e:
print("生成器最后的返回值是:",e.value)
break
第二类:生成器表达式:类似于列表推导,只不过是把一对大括号[]变换为一对小括号()。但是,生成器表达式是按需产生一个生成器结果对象,要想拿到每一个元素,就需要循环遍历。
如下案例加以说明:
# 一个列表
xiaoke=[2,3,4,5]
# 生成器generator,类似于list,但是是把[]改为()
gen=(a for a in xiaoke)
for i in gen:
print(i)
#结果是:
2
3
4
5
# 为什么要使用生成器?因为效率。
# 使用生成器表达式取代列表推导式可以同时节省 cpu 和 内存(RAM)。
# 如果你构造一个列表(list)的目的仅仅是传递给别的函数,
# 比如 传递给tuple()或者set(), 那就用生成器表达式替代吧!
# 本案例是直接把列表转化为元组
kk=tuple(a for a in xiaoke)
print(kk)
#结果是:
(2, 3, 4, 5)
# python内置的一些函数,可以识别这是生成器表达式,外面有一对小括号,就是生成器
result1=sum(a for a in range(3))
print(result1)
# 列表推导式
result2=sum([a for a in range(3)])
print(result2)
总结
以上是 Python中生成器和迭代器的区别详解 的全部内容, 来源链接: utcz.com/z/342385.html