JavaScript SHA-256加密算法详细代码

本文实例为大家分享了JavaScript SHA-256加密算法,供大家参考,具体内容如下

/*

* A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined

* in FIPS 180-2

* Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.

* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet

* Distributed under the BSD License

* See http://pajhome.org.uk/crypt/md5 for details.

* Also http://anmar.eu.org/projects/jssha2/

*/

/*

* Configurable variables. You may need to tweak these to be compatible with

* the server-side, but the defaults work in most cases.

*/

var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */

var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */

/*

* These are the functions you'll usually want to call

* They take string arguments and return either hex or base-64 encoded strings

*/

function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }

function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }

function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }

function hex_hmac_sha256(k, d)

{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }

function b64_hmac_sha256(k, d)

{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }

function any_hmac_sha256(k, d, e)

{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }

/*

* Perform a simple self-test to see if the VM is working

*/

function sha256_vm_test()

{

return hex_sha256("abc").toLowerCase() ==

"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";

}

/*

* Calculate the sha256 of a raw string

*/

function rstr_sha256(s)

{

return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));

}

/*

* Calculate the HMAC-sha256 of a key and some data (raw strings)

*/

function rstr_hmac_sha256(key, data)

{

var bkey = rstr2binb(key);

if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);

var ipad = Array(16), opad = Array(16);

for(var i = 0; i < 16; i++)

{

ipad[i] = bkey[i] ^ 0x36363636;

opad[i] = bkey[i] ^ 0x5C5C5C5C;

}

var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);

return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));

}

/*

* Convert a raw string to a hex string

*/

function rstr2hex(input)

{

try { hexcase } catch(e) { hexcase=0; }

var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";

var output = "";

var x;

for(var i = 0; i < input.length; i++)

{

x = input.charCodeAt(i);

output += hex_tab.charAt((x >>> 4) & 0x0F)

+ hex_tab.charAt( x & 0x0F);

}

return output;

}

/*

* Convert a raw string to a base-64 string

*/

function rstr2b64(input)

{

try { b64pad } catch(e) { b64pad=''; }

var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

var output = "";

var len = input.length;

for(var i = 0; i < len; i += 3)

{

var triplet = (input.charCodeAt(i) << 16)

| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)

| (i + 2 < len ? input.charCodeAt(i+2) : 0);

for(var j = 0; j < 4; j++)

{

if(i * 8 + j * 6 > input.length * 8) output += b64pad;

else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);

}

}

return output;

}

/*

* Convert a raw string to an arbitrary string encoding

*/

function rstr2any(input, encoding)

{

var divisor = encoding.length;

var remainders = Array();

var i, q, x, quotient;

/* Convert to an array of 16-bit big-endian values, forming the dividend */

var dividend = Array(Math.ceil(input.length / 2));

for(i = 0; i < dividend.length; i++)

{

dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);

}

/*

* Repeatedly perform a long division. The binary array forms the dividend,

* the length of the encoding is the divisor. Once computed, the quotient

* forms the dividend for the next step. We stop when the dividend is zero.

* All remainders are stored for later use.

*/

while(dividend.length > 0)

{

quotient = Array();

x = 0;

for(i = 0; i < dividend.length; i++)

{

x = (x << 16) + dividend[i];

q = Math.floor(x / divisor);

x -= q * divisor;

if(quotient.length > 0 || q > 0)

quotient[quotient.length] = q;

}

remainders[remainders.length] = x;

dividend = quotient;

}

/* Convert the remainders to the output string */

var output = "";

for(i = remainders.length - 1; i >= 0; i--)

output += encoding.charAt(remainders[i]);

/* Append leading zero equivalents */

var full_length = Math.ceil(input.length * 8 /

(Math.log(encoding.length) / Math.log(2)))

for(i = output.length; i < full_length; i++)

output = encoding[0] + output;

return output;

}

/*

* Encode a string as utf-8.

* For efficiency, this assumes the input is valid utf-16.

*/

function str2rstr_utf8(input)

{

var output = "";

var i = -1;

var x, y;

while(++i < input.length)

{

/* Decode utf-16 surrogate pairs */

x = input.charCodeAt(i);

y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;

if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)

{

x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);

i++;

}

/* Encode output as utf-8 */

if(x <= 0x7F)

output += String.fromCharCode(x);

else if(x <= 0x7FF)

output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),

0x80 | ( x & 0x3F));

else if(x <= 0xFFFF)

output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),

0x80 | ((x >>> 6 ) & 0x3F),

0x80 | ( x & 0x3F));

else if(x <= 0x1FFFFF)

output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),

0x80 | ((x >>> 12) & 0x3F),

0x80 | ((x >>> 6 ) & 0x3F),

0x80 | ( x & 0x3F));

}

return output;

}

/*

* Encode a string as utf-16

*/

function str2rstr_utf16le(input)

{

var output = "";

for(var i = 0; i < input.length; i++)

output += String.fromCharCode( input.charCodeAt(i) & 0xFF,

(input.charCodeAt(i) >>> 8) & 0xFF);

return output;

}

function str2rstr_utf16be(input)

{

var output = "";

for(var i = 0; i < input.length; i++)

output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,

input.charCodeAt(i) & 0xFF);

return output;

}

/*

* Convert a raw string to an array of big-endian words

* Characters >255 have their high-byte silently ignored.

*/

function rstr2binb(input)

{

var output = Array(input.length >> 2);

for(var i = 0; i < output.length; i++)

output[i] = 0;

for(var i = 0; i < input.length * 8; i += 8)

output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);

return output;

}

/*

* Convert an array of big-endian words to a string

*/

function binb2rstr(input)

{

var output = "";

for(var i = 0; i < input.length * 32; i += 8)

output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);

return output;

}

/*

* Main sha256 function, with its support functions

*/

function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}

function sha256_R (X, n) {return ( X >>> n );}

function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}

function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}

function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}

function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}

function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}

function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}

function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}

function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}

function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}

function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}

var sha256_K = new Array

(

1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,

-1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,

1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,

264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,

-1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,

113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,

1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,

-1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,

430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,

1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,

-1866530822, -1538233109, -1090935817, -965641998

);

function binb_sha256(m, l)

{

var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,

1359893119, -1694144372, 528734635, 1541459225);

var W = new Array(64);

var a, b, c, d, e, f, g, h;

var i, j, T1, T2;

/* append padding */

m[l >> 5] |= 0x80 << (24 - l % 32);

m[((l + 64 >> 9) << 4) + 15] = l;

for(i = 0; i < m.length; i += 16)

{

a = HASH[0];

b = HASH[1];

c = HASH[2];

d = HASH[3];

e = HASH[4];

f = HASH[5];

g = HASH[6];

h = HASH[7];

for(j = 0; j < 64; j++)

{

if (j < 16) W[j] = m[j + i];

else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),

sha256_Gamma0256(W[j - 15])), W[j - 16]);

T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),

sha256_K[j]), W[j]);

T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));

h = g;

g = f;

f = e;

e = safe_add(d, T1);

d = c;

c = b;

b = a;

a = safe_add(T1, T2);

}

HASH[0] = safe_add(a, HASH[0]);

HASH[1] = safe_add(b, HASH[1]);

HASH[2] = safe_add(c, HASH[2]);

HASH[3] = safe_add(d, HASH[3]);

HASH[4] = safe_add(e, HASH[4]);

HASH[5] = safe_add(f, HASH[5]);

HASH[6] = safe_add(g, HASH[6]);

HASH[7] = safe_add(h, HASH[7]);

}

return HASH;

}

function safe_add (x, y)

{

var lsw = (x & 0xFFFF) + (y & 0xFFFF);

var msw = (x >> 16) + (y >> 16) + (lsw >> 16);

return (msw << 16) | (lsw & 0xFFFF);

}

以上是 JavaScript SHA-256加密算法详细代码 的全部内容, 来源链接: utcz.com/z/340269.html

回到顶部