python如何求解两数的最大公约数

题目:

给定两个自然数,求这两个数的最大公约数。

分析:

单看题目的话,非常简单,我们可以循环遍历自然数,如果能够整除两个自然数,就把这个数记下来,在这些记录中找到最大的一个。

但是这样做有几个缺点:一是做除法计算量比较大,二是遍历所有自然数完全没有必要。另外,如果能够循环,还是不要递归,因为Python的函数递归最大栈空间是1000(如果我没有记错的话),如果数字大一些,很容易出现爆栈。

所以在这里有两种处理方法:

1、如果较大的自然数除较小的一个自然数,取得余数,较小的自然数和余数的最大公约数就是我们要求的值。

2、如果较大的自然数减去较小的自然数,取得差值,较小的自然数和差值的最大公约数就是我们要求的值。

基于以上两条,我们就可以在根据定义得到的算法的基础上进行改进,但是!减法操作当然比取余要方便很多。而且在计算机里,做位运算的速度要比加减乘除都快,所以,我写了四个算法,具体描述在代码的 __doc__里有注释阐述

代码:

def greatest_common_divisor_1(self, num1, num2):

'''

数值计算寻找最大公约数,给定两个整数,计算其最大公约数,时间复杂度为 o(min(num1,num2)),取余运算复杂度高

'''

gbc = 1

for i in xrange(2, min(num1, num2)+1):

if num2 % i == 0 and num1 % i == 0:

gbc = i

return gbc

def greatest_common_divisor_2(self, num1, num2):

'''

辗转相减法,时间复杂度最差为 o(min(num1,num2)),一般情况下都比这个要好。相减运算要比除法方便很多

'''

while num1 != num2:

if num1 > num2:

num1 = num1 - num2

else:

num2 = num2 - num1

return num1

def greatest_common_divisor_3(self, num1, num2):

'''

求余数法,取模运算比较麻烦,时间复杂度低 o(log max(num1, num2))

'''

while num1 != num2:

if num1 > num2:

if num1 % num2 == 0:

return num2

num1 = num1 % num2

else:

if num2 % num1 == 0:

return num1

num2 = num2 % num1

return num1

def greatest_common_divisor(self, num1, num2):

'''

求两个数的最大公约数

综合取余法和辗转相减法,既能得到较好的时间复杂度,又能避免取余运算,时间复杂度稳定 o(log max(num1,num2))

如果取两个非常大的数的话,前面的方法很容易爆栈、取余困难等等,但是该方法没有问题

a = 999999342353200

b = 777774234

print greatest_common_divisor(a, b)

'''

factor = 1

if num1 < num2:

return greatest_common_divisor_1(num2, num1)

while num1 != num2:

if num1 & 1 is False and num2 & 1 is False: # 均为偶数

num1 = num1 >> 1

num2 = num2 >> 2

factor *= 2

elif num1 & 1 is False and num2 & 1 is True:

num1 = num1 >> 1

elif num1 & 1 is True and num2 & 1 is False:

num2 = num2 >> 1

else:

if num1 > num2:

num1 = num1 - num2

else:

num2 = num2 - num1

return factor*num1

以上是 python如何求解两数的最大公约数 的全部内容, 来源链接: utcz.com/z/339655.html

回到顶部