python 随机森林算法及其优化详解
前言
优化随机森林算法,正确率提高1%~5%(已经有90%+的正确率,再调高会导致过拟合)
论文当然是参考的,毕竟出现早的算法都被人研究烂了,什么优化基本都做过。而人类最高明之处就是懂得利用前人总结的经验和制造的工具(说了这么多就是为偷懒找借口。hhhh)
优化思路
1. 计算传统模型准确率
2. 计算设定树木颗数时最佳树深度,以最佳深度重新生成随机森林
3. 计算新生成森林中每棵树的AUC,选取AUC靠前的一定百分比的树
4. 通过计算各个树的数据相似度,排除相似度超过设定值且AUC较小的树
5. 计算最终的准确率
主要代码粘贴如下(注释比较详细,就不介绍代码了)
#-*- coding: utf-8 -*-
import time
from csv import reader
from random import randint
from random import seed
import numpy as np
from numpy import mat
from group_11 import caculateAUC_1, plotTree
# 建立一棵CART树
'''试探分枝'''
def data_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
'''计算基尼指数'''
def calc_gini(groups, class_values):
gini = 0.0
total_size = 0
for group in groups:
total_size += len(group)
for group in groups:
size = len(group)
if size == 0:
continue
for class_value in class_values:
proportion = [row[-1] for row in group].count(class_value) / float(size)
gini += (size / float(total_size)) * (proportion * (1.0 - proportion))# 二分类执行两次,相当于*2
return gini
'''找最佳分叉点'''
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset))# 类别标签集合
b_index, b_value, b_score, b_groups = 999, 999, 999, None
# 随机选取特征子集,包含n_features个特征
features = list()
while len(features) < n_features:
# 随机选取特征
# 特征索引
index = randint(0, len(dataset[0]) - 2) # 往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取
if index not in features:
features.append(index)
for index in features: # 对每一个特征
# 计算Gini指数
for row in dataset: # 按照每个记录的该特征的取值划分成两个子集,计算对于的Gini(D,A),取最小的
groups = data_split(index, row[index], dataset)
gini = calc_gini(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {'index': b_index, 'value': b_value, 'groups': b_groups} # 每个节点由字典组成
'''多数表决'''
def to_terminal(group):
outcomes = [row[-1] for row in group]
return max(set(outcomes), key=outcomes.count)
'''分枝'''
def split(node, max_depth, min_size, n_features, depth):
left, right = node['groups'] # 自动分包/切片
del (node['groups'])
if not left or not right: # left或者right为空时
node['left'] = node['right'] = to_terminal(left + right) # 叶节点不好理解
return
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# 左子树
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left, n_features)
split(node['left'], max_depth, min_size, n_features, depth + 1)
# 右子树
if len(right) <= min_size: # min_size最小的的分枝样本数
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth + 1)
'''建立一棵树'''
def build_one_tree(train, max_depth, min_size, n_features):
# 寻找最佳分裂点作为根节点
root = get_split(train, n_features)
split(root, max_depth, min_size, n_features, 1)
return root
'''用森林里的一棵树来预测'''
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
# 随机森林类
class randomForest:
def __init__(self,trees_num, max_depth, leaf_min_size, sample_ratio, feature_ratio):
self.trees_num = trees_num # 森林的树的数目
self.max_depth = max_depth # 树深
self.leaf_min_size = leaf_min_size # 建立树时,停止的分枝样本最小数目
self.samples_split_ratio = sample_ratio # 采样,创建子集的比例(行采样)
self.feature_ratio = feature_ratio # 特征比例(列采样)
self.trees = list() # 森林
'''有放回的采样,创建数据子集'''
def sample_split(self, dataset):
sample = list()
n_sample = round(len(dataset) * self.samples_split_ratio) #每棵树的采样数
while len(sample) < n_sample:
index = randint(0, len(dataset) - 2) #随机有放回的采样
sample.append(dataset[index])
return sample
##############***Out-of-Bag***################################
# 进行袋外估计等相关函数的实现,需要注意并不是每个样本都可能出现在随机森林的袋外数据中
# 因此进行oob估计时需要注意估计样本的数量
def OOB(self, oobdata, train, trees):
'''输入为:袋外数据dict,训练集,tree_list
return oob准确率'''
n_rows = []
count = 0
n_trees = len(trees) # 森林中树的棵树
for key, item in oobdata.items():
n_rows.append(item)
# print(len(n_rows)) # 所有trees中的oob数据的合集
n_rows_list = sum(n_rows, [])
unique_list = []
for l1 in n_rows_list: # 从oob合集中计算独立样本数量
if l1 not in unique_list:
unique_list.append(l1)
n = len(unique_list)
# print(n)
# 对训练集中的每个数据,进行遍历,寻找其作为oob数据时的所有trees,并进行多数投票
for row in train:
pre = []
for i in range(n_trees):
if row not in oobdata[i]:
# print('row: ',row)
# print('trees[i]: ', trees[i])
pre.append(predict(trees[i], row))
if len(pre) > 0:
label = max(set(pre), key=pre.count)
if label == row[-1]:
count += 1
return (float(count) / n) * 100
'''建立随机森林'''
def build_randomforest(self, train):
temp_flag = 0
max_depth = self.max_depth # 树深
min_size = self.leaf_min_size # 建立树时,停止的分枝样本最小数目
n_trees = self.trees_num # 森林的树的数目
n_features = int(self.feature_ratio * (len(train[0])-1)) #列采样,从M个feature中,选择m个(m<<M)
# print('特征值为 : ',n_features)
oobs = {} # ----------------------
for i in range(n_trees): # 建立n_trees棵决策树
sample = self.sample_split(train) # 有放回的采样,创建数据子集
oobs[i] = sample # ----------------
tree = build_one_tree(sample, max_depth, min_size, n_features) # 建立决策树
self.trees.append(tree)
temp_flag += 1
# print(i,tree)
oob_score = self.OOB(oobs, train, self.trees) # oob准确率---------
print("oob_score is ", oob_score) # 打印oob准确率---------
return self.trees
'''随机森林预测的多数表决'''
def bagging_predict(self, onetestdata):
predictions = [predict(tree, onetestdata) for tree in self.trees]
return max(set(predictions), key=predictions.count)
'''计算建立的森林的精确度'''
def accuracy_metric(self, testdata):
correct = 0
for i in range(len(testdata)):
predicted = self.bagging_predict(testdata[i])
if testdata[i][-1] == predicted:
correct += 1
return correct / float(len(testdata)) * 100.0
# 数据处理
'''导入数据'''
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
# dataset.append(row)
dataset.append(row[:-1])
# return dataset
return dataset[1:], dataset[0]
'''划分训练数据与测试数据'''
def split_train_test(dataset, ratio=0.3):
#ratio = 0.2 # 取百分之二十的数据当做测试数据
num = len(dataset)
train_num = int((1-ratio) * num)
dataset_copy = list(dataset)
traindata = list()
while len(traindata) < train_num:
index = randint(0,len(dataset_copy)-1)
traindata.append(dataset_copy.pop(index))
testdata = dataset_copy
return traindata, testdata
'''分析树,将向量内积写入list'''
def analyListTree(node, tag, result):
# 叶子节点的父节点
if (isinstance(node['left'], dict)):
# 计算node与node[tag]的内积
tag="left"
re = Inner_product(node, tag)
result.append(re)
analyListTree(node['left'], 'left', result)
return
elif (isinstance(node['right'], dict)):
# 计算node与node[tag]的内积
tag = "right"
re = Inner_product(node, tag)
result.append(re)
analyListTree(node['right'], 'right', result)
return
else:
return
'''求向量内积'''
# 计算node与node[tag]的内积
def Inner_product(node ,tag):
a = mat([[float(node['index'])], [float(node['value'])]])
b = mat([[float(node[tag]['index'])], [float(node[tag]['value'])]])
return (a.T * b)[0,0]
'''相似度优化'''
''' same_value = 20 # 向量内积的差(小于此值认为相似)
same_rate = 0.63 # 树的相似度(大于此值认为相似)
返回新的森林(已去掉相似度高的树)'''
def similarity_optimization(newforest, samevalue, samerate):
res = list() # 存储森林的内积
result = list() # 存储某棵树的内积
i = 1
for tree in newforest:
# 分析树,将向量内积写入list
# result 存储tree的内积
analyListTree(tree, None, result)
res.append(result)
# print('第',i,'棵树:',len(result),result)
result = []
# print('res = ',len(res),res)
# 取一棵树的单个向量内积与其他树的单个向量内积做完全对比(相似度)
# 遍历列表的列
for i in range(0, len(res) - 1):
# 保证此列未被置空、
if not newforest[i] == None:
# 遍历做对比的树的列
for k in range(i + 1, len(res)):
if not newforest[k] == None:
# time用于统计相似的次数,在每次更换对比树时重置为0
time = 0
# 遍历列表的当前行
for j in range(0, len(res[i])):
# 当前两颗树对比次数
all_contrast = (res[ i].__len__() * res[k].__len__())
# 遍历做对比的树的行
for l in range(0, len(res[k])):
# 如果向量的内积相等,计数器加一
if res[i][j] - res[k][l] < samevalue:
time = time + 1
# 如果相似度大于设定值
real_same_rate = time / all_contrast
if (real_same_rate > samerate):
# 将对比树置空
newforest[k] = None
result_forest = list()
for i in range(0, newforest.__len__()):
if not newforest[i] == None:
result_forest.append(newforest[i])
return result_forest
'''auc优化method'''
def auc_optimization(auclist,trees_num,trees):
# 为auc排序,获取从大到小的与trees相对应的索引列表
b = sorted(enumerate(auclist), key=lambda x: x[1], reverse=True)
index_list = [x[0] for x in b]
auc_num = int(trees_num * 2 / 3)
# 取auc高的前auc_num个
print('auc: ', auc_num, index_list)
newTempForest = list()
for i in range(auc_num):
# myRF.trees.append(tempForest[i])
# newTempForest.append(myRF.trees[index_list[i]])
newTempForest.append(trees[index_list[i]])
return newTempForest
'''得到森林中决策树的最佳深度'''
def getBestDepth(min_size,sample_ratio,trees_num,feature_ratio,traindata,testdata):
max_depth = np.linspace(1, 15, 15, endpoint=True)
# max_depth=[5,6,7,8,9,10,11,12,13,14,15]
scores_final = []
i=0
for depth in max_depth:
# 初始化随机森林
# print('=========>',i,'<=============')
myRF_ = randomForest(trees_num, depth, min_size, sample_ratio, feature_ratio)
# 生成随机森林
myRF_.build_randomforest(traindata)
# 测试评估
acc = myRF_.accuracy_metric(testdata[:-1])
# print('模型准确率:', acc, '%')
# scores_final.append(acc.mean())
scores_final.append(acc*0.01)
i=i+1
# print('scores_final: ',scores_final)
# 找到深度小且准确率高的值
best_depth = 0
temp_score = 0
for i in range(len(scores_final)):
if scores_final[i] > temp_score:
temp_score = scores_final[i]
best_depth = max_depth[i]
# print('best_depth:',np.mean(scores_final),best_depth)
# plt.plot(max_depth, scores_final, 'r-', lw=2)
# # plt.plot(max_depth, list(range(0,max(scores_final))), 'r-', lw=2)
# plt.xlabel('max_depth')
# plt.ylabel('CV scores')
# plt.ylim(bottom=0.0,top=1.0)
# plt.grid()
# plt.show()
return best_depth
'''对比不同树个数时的模型正确率'''
def getMyRFAcclist(treenum_list):
seed(1) # 每一次执行本文件时都能产生同一个随机数
filename = 'DataSet3.csv' #SMOTE处理过的数据
min_size = 1
sample_ratio = 1
feature_ratio = 0.3 # 尽可能小,但是要保证 int(self.feature_ratio * (len(train[0])-1)) 大于1
same_value = 20 # 向量内积的差(小于此值认为相似)
same_rate = 0.63 # 树的相似度(大于此值认为相似)
# 加载数据
dataset, features = load_csv(filename)
traindata, testdata = split_train_test(dataset, feature_ratio)
# 森林中不同树个数的对比
# treenum_list = [20, 30, 40, 50, 60]
acc_num_list = list()
acc_list=list()
for trees_num in treenum_list:
# 优化1-获取最优深度
max_depth = getBestDepth(min_size, sample_ratio, trees_num, feature_ratio, traindata, testdata)
print('max_depth is ', max_depth)
# 初始化随机森林
myRF = randomForest(trees_num, max_depth, min_size, sample_ratio, feature_ratio)
# 生成随机森林
myRF.build_randomforest(traindata)
print('Tree_number: ', myRF.trees.__len__())
# 计算森林中每棵树的AUC
auc_list = caculateAUC_1.caculateRFAUC(testdata, myRF.trees)
# 选取AUC高的决策数形成新的森林(auc优化)
newTempForest = auc_optimization(auc_list,trees_num,myRF.trees)
# 相似度优化
myRF.trees = similarity_optimization(newTempForest, same_value, same_rate)
# 测试评估
acc = myRF.accuracy_metric(testdata[:-1])
print('myRF1_模型准确率:', acc, '%')
acc_num_list.append([myRF.trees.__len__(), acc])
acc_list.append(acc)
print('trees_num from 20 to 60: ', acc_num_list)
return acc_list
if __name__ == '__main__':
start = time.clock()
seed(1) # 每一次执行本文件时都能产生同一个随机数
filename = 'DataSet3.csv' # 这里是已经利用SMOTE进行过预处理的数据集
max_depth = 15 # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
min_size = 1
sample_ratio = 1
trees_num = 20
feature_ratio = 0.3 # 尽可能小,但是要保证 int(self.feature_ratio * (len(train[0])-1)) 大于1
same_value = 20 # 向量内积的差(小于此值认为相似)
same_rate = 0.82 # 树的相似度(大于此值认为相似)
# 加载数据
dataset,features = load_csv(filename)
traindata,testdata = split_train_test(dataset, feature_ratio)
# 优化1-获取最优深度
# max_depth = getBestDepth(min_size, sample_ratio, trees_num, feature_ratio, traindata, testdata)
# print('max_depth is ',max_depth)
# 初始化随机森林
myRF = randomForest(trees_num, max_depth, min_size, sample_ratio, feature_ratio)
# 生成随机森林
myRF.build_randomforest(traindata)
print('Tree_number: ', myRF.trees.__len__())
acc = myRF.accuracy_metric(testdata[:-1])
print('传统RF模型准确率:',acc,'%')
# 画出某棵树用以可视化观察(这里是第一棵树)
# plotTree.creatPlot(myRF.trees[0], features)
# 计算森林中每棵树的AUC
auc_list = caculateAUC_1.caculateRFAUC(testdata,myRF.trees)
# 画出每棵树的auc——柱状图
# plotTree.plotAUCbar(auc_list.__len__(),auc_list)
# 选取AUC高的决策数形成新的森林(auc优化)
newTempForest = auc_optimization(auc_list,trees_num,myRF.trees)
# 相似度优化
myRF.trees=similarity_optimization(newTempForest, same_value, same_rate)
print('优化后Tree_number: ', myRF.trees.__len__())
# 测试评估
acc = myRF.accuracy_metric(testdata[:-1])
# print('优化后模型准确率:', acc, '%')
print('myRF1_模型准确率:', acc, '%')
# 画出某棵树用以可视化观察(这里是第一棵树)
# plotTree.creatPlot(myRF.trees[0], features)
# 计算森林中每棵树的AUC
auc_list = caculateAUC_1.caculateRFAUC(testdata, myRF.trees)
# 画出每棵树的auc——柱状图
plotTree.plotAUCbar(auc_list.__len__(), auc_list)
end = time.clock()
print('The end!')
print(end-start)
以上是 python 随机森林算法及其优化详解 的全部内容, 来源链接: utcz.com/z/339388.html