Dijkstra最短路径算法
主要问题与上一个相同,从起始节点到任何其他节点,找到最小的距离。在此问题中,主要区别在于该图是使用邻接矩阵表示的。(为此目的,成本矩阵和邻接矩阵相似)。
对于邻接表表示,时间复杂度为O(V ^ 2),其中V是图形G(V,E)中的节点数
输入输出
Input:The adjacency matrix:Output:
0 to 1, Using: 0, Cost: 3
0 to 2, Using: 1, Cost: 5
0 to 3, Using: 1, Cost: 4
0 to 4, Using: 3, Cost: 6
0 to 5, Using: 2, Cost: 7
0 to 6, Using: 4, Cost: 7
算法
dijkstraShortestPath(n, dist, next, start)
输入-节点总数n,每个顶点的距离列表,存储下一个节点的下一个列表以及种子或起始顶点。
输出- 从起点到所有其他顶点的最短路径。
Begincreate a status list to hold the current status of the selected node
for all vertices u in V do
status[u] := unconsidered
dist[u] := distance from source using cost matrix
next[u] := start
done
status[start] := considered, dist[start] := 0 and next[start] := φ
while take unconsidered vertex u as distance is minimum do
status[u] := considered
for all vertex v in V do
if status[v] = unconsidered then
if dist[v] > dist[u] + cost[u,v] then
dist[v] := dist[u] + cost[u,v]
next[v] := u
done
done
End
示例
#include<iostream>#define V 7
#define INF 999
using namespace std;
//图的成本矩阵
int costMat[V][V] = {
{0, 3, 6, INF, INF, INF, INF},
{3, 0, 2, 1, INF, INF, INF},
{6, 2, 0, 1, 4, 2, INF},
{INF, 1, 1, 0, 2, INF, 4},
{INF, INF, 4, 2, 0, 2, 1},
{INF, INF, 2, INF, 2, 0, 1},
{INF, INF, INF, 4, 1, 1, 0}
};
int minimum(int *status, int *dis, int n) {
int i, min, index;
min = INF;
for(i = 0; i<n; i++)
if(dis[i] < min && status[i] == 1) {
min = dis[i];
index = i;
}
if(status[index] == 1)
return index; //minimum unconsidered vertex distance
else
return -1; //when all vertices considered
}
void dijkstra(int n, int *dist,int *next, int s) {
int status[V];
int u, v;
//初始化
for(u = 0; u<n; u++) {
status[u] = 1; //unconsidered vertex
dist[u] = costMat[u][s]; //distance from source
next[u] = s;
}
//对于源顶点
status[s] = 2; dist[s] = 0; next[s] = -1; //-1 for starting vertex
while((u = minimum(status, dist, n)) > -1) {
status[u] = 2;//now considered
for(v = 0; v<n; v++)
if(status[v] == 1)
if(dist[v] > dist[u] + costMat[u][v]) {
dist[v] = dist[u] + costMat[u][v]; //update distance
next[v] = u;
}
}
}
main() {
int dis[V], next[V], i, start = 0;
dijkstra(V, dis, next, start);
for(i = 0; i<V; i++)
if(i != start)
cout << start << " to " << i <<", Using: " << next[i] << ",
Cost: " << dis[i] << endl;
}
输出结果
0 to 1, Using: 0, Cost: 30 to 2, Using: 1, Cost: 5
0 to 3, Using: 1, Cost: 4
0 to 4, Using: 3, Cost: 6
0 to 5, Using: 2, Cost: 7
0 to 6, Using: 4, Cost: 7
以上是 Dijkstra最短路径算法 的全部内容, 来源链接: utcz.com/z/338355.html