Python基于回溯法子集树模板解决m着色问题示例

本文实例讲述了Python基于回溯法子集树模板解决m着色问题。分享给大家供大家参考,具体如下:

问题

图的m-着色判定问题

给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色?

图的m-着色优化问题

若一个图最少需要m种颜色才能使图中任意相邻的2个顶点着不同颜色,则称这个数m为该图的色数。求一个图的最小色数m的问题称为m-着色优化问题。

分析

解的长度是固定的,n。若x为本问题的一个解,则x[i]表示第i个节点的涂色编号。

可以将m种颜色看作每个节点的状态空间。每到一个节点,遍历所有颜色,剪枝,回溯。

不难看出,可以套用回溯法子集树模板。

代码

'''图的m着色问题'''

# 用邻接表表示图

n = 5 # 节点数

a,b,c,d,e = range(n) # 节点名称

graph = [

{b,c,d},

{a,c,d,e},

{a,b,d},

{a,b,c,e},

{b,d}

]

m = 4 # m种颜色

x = [0]*n # 一个解(n元数组,长度固定)注意:解x的下标就是a,b,c,d,e!!!

X = [] # 一组解

# 冲突检测

def conflict(k):

global n,graph,x

# 找出第k个节点前面已经涂色的邻接节点

nodes = [node for node in range(k) if node in graph[k]]

if x[k] in [x[node] for node in nodes]: # 已经有相邻节点涂了这种颜色

return True

return False # 无冲突

# 图的m着色(全部解)

def dfs(k): # 到达(解x的)第k个节点

global n,m,graph,x,X

if k == n: # 解的长度超出

print(x)

#X.append(x[:])

else:

for color in range(m): # 遍历节点k的可涂颜色编号(状态空间),全都一样

x[k] = color

if not conflict(k): # 剪枝

dfs(k+1)

# 测试

dfs(a) # 从节点a开始

效果图

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

以上是 Python基于回溯法子集树模板解决m着色问题示例 的全部内容, 来源链接: utcz.com/z/336948.html

回到顶部