pandas数据预处理之dataframe的groupby操作方法

在数据预处理过程中可能会遇到这样的问题,如下图:数据中某一个key有多组数据,如何分别对每个key进行相同的运算?

dataframe里面给出了一个group by的一个操作,对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l (Splitting)按照一些规则将数据分为不同的组;

l (Applying)对于每组数据分别执行一个函数;

l (Combining)将结果组合到一个数据结构中;

使用dataframe实现groupby的用法:

# -*- coding: UTF-8 -*-

import pandas as pd

df = pd.DataFrame([{'col1':'a', 'col2':1, 'col3':'aa'}, {'col1':'b', 'col2':2, 'col3':'bb'}, {'col1':'c', 'col2':3, 'col3':'cc'}, {'col1':'a', 'col2':44, 'col3':'aa'}])

print df

# 按col1分组并按col2求和

print df.groupby(by='col1').agg({'col2':sum}).reset_index()

# 按col1分组并按col2求最值

print df.groupby(by='col1').agg({'col2':['max', 'min']}).reset_index()

# 按col1 ,col3分组并按col2求和

print df.groupby(by=['col1', 'col3']).agg({'col2':sum}).reset_index()

输出结果为:

col1 col2 col3

0 a 1 aa

1 b 2 bb

2 c 3 cc

3 a 44 aa

col1 col2

0 a 45

1 b 2

2 c 3

col1 col2

max min

0 a 44 1

1 b 2 2

2 c 3 3

col1 col3 col2

0 a aa 45

1 b bb 2

2 c cc 3

注意点:

代码中调用了reset_index() 函数, 如果不使用这个函数输出的结果将是:

col2

col1

a 45

b 2

c 3

col2

max min

col1

a 44 1

b 2 2

c 3 3

col2

col1 col3

a aa 45

b bb 2

c cc 3

上下两个结果还是有区别的,但是具体区别暂时不太清楚,不过下面的一种输出结果是不能跟使用df['col1']来提取第一列的。至于是什么原因暂时还不清楚,如果您对pandas比较理解或者知道原因,欢迎在评论中留言。

以上这篇pandas数据预处理之dataframe的groupby操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 pandas数据预处理之dataframe的groupby操作方法 的全部内容, 来源链接: utcz.com/z/336725.html

回到顶部