如何使用 Python SciPy 求解循环矩阵方程?

名为 scipy.linalg.solveh_banded 的线性函数用于求解带状矩阵方程。在下面给出的例子中,我们将解决循环系统 Cx = b -

示例

fromscipy.linalgimport solve_circulant, solve, circulant, lstsq

import numpy as np

c = np.array([2, 2, 4])

b = np.array([1, 2, 3])

solve_circulant(c, b)

输出结果
array([ 0.75, -0.25, 0.25])

示例

让我们看一个单一的例子,它会引发一个 LinAlgError -

fromscipy.linalgimport solve_circulant, solve, circulant, lstsq

import numpy as np

c = np.array([1, 1, 0, 0])

b = np.array([1, 2, 3, 4])

solve_circulant(c, b)

输出结果
--------------------------------------------------------------------------

LinAlgError Traceback (most recent call last)

<ipython-input-6-978604ed0a97> in <module>

----> 1 solve_circulant(c, b)

~\AppData\Roaming\Python\Python37\site-packages\scipy\linalg\basic.py in

solve_circulant(c, b, singular, tol, caxis, baxis, outaxis)

865    if is_near_singular:

866       if singular == 'raise':

--> 867     raise LinAlgError("近奇异循环矩阵。")

868    else:

869    # 将较小的值替换为 1 以避免错误

LinAlgError: 近奇异循环矩阵。

现在,要消除此错误,我们需要使用选项 single = 'lstsq' 如下 -

fromscipy.linalgimport solve_circulant, solve, circulant, lstsq

import numpy as np

c = np.array([1, 1, 0, 0])

b = np.array([1, 2, 3, 4])

solve_circulant(c, b, singular='lstsq')

输出结果
array([0.25, 1.25, 2.25, 1.25])

以上是 如何使用 Python SciPy 求解循环矩阵方程? 的全部内容, 来源链接: utcz.com/z/335464.html

回到顶部