浅谈Node.js之异步流控制

前言

在没有深度使用函数回调的经验的时候,去看这些内容还是有一点吃力的。由于Node.js独特的异步特性,才出现了“回调地狱”的问题,这篇文章中,我比较详细的记录了如何解决异步流问题。

文章会很长,而且这篇是对异步流模式的解释。文中会使用一个简单的网络蜘蛛的例子,它的作用是抓取指定URL的网页内容并保存在项目中,在文章的最后,可以找到整篇文章中的源码demo。

1.原生JavaScript模式

本篇不针对初学者,因此会省略掉大部分的基础内容的讲解:

(spider_v1.js)

const request = require("request");

const fs = require("fs");

const mkdirp = require("mkdirp");

const path = require("path");

const utilities = require("./utilities");

function spider(url, callback) {

const filename = utilities.urlToFilename(url);

console.log(`filename: ${filename}`);

fs.exists(filename, exists => {

if (!exists) {

console.log(`Downloading ${url}`);

request(url, (err, response, body) => {

if (err) {

callback(err);

} else {

mkdirp(path.dirname(filename), err => {

if (err) {

callback(err);

} else {

fs.writeFile(filename, body, err => {

if (err) {

callback(err);

} else {

callback(null, filename, true);

}

});

}

});

}

});

} else {

callback(null, filename, false);

}

});

}

spider(process.argv[2], (err, filename, downloaded) => {

if (err) {

console.log(err);

} else if (downloaded) {

console.log(`Completed the download of ${filename}`);

} else {

console.log(`${filename} was already downloaded`);

}

});

上边的代码的流程大概是这样的:

  1. 把url转换成filename
  2. 判断该文件名是否存在,若存在直接返回,否则进入下一步
  3. 发请求,获取body
  4. 把body写入到文件中

这是一个非常简单版本的蜘蛛,他只能抓取一个url的内容,看到上边的回调多么令人头疼。那么我们开始进行优化。

首先,if else 这种方式可以进行优化,这个很简单,不用多说,放一个对比效果:

/// before

if (err) {

callback(err);

} else {

callback(null, filename, true);

}

/// after

if (err) {

return callback(err);

}

callback(null, filename, true);

代码这么写,嵌套就会少一层,但经验丰富的程序员会认为,这样写过重强调了error,我们编程的重点应该放在处理正确的数据上,在可读性上也存在这样的要求。

另一个优化是函数拆分,上边代码中的spider函数中,可以把下载文件和保存文件拆分出去。

(spider_v2.js)

const request = require("request");

const fs = require("fs");

const mkdirp = require("mkdirp");

const path = require("path");

const utilities = require("./utilities");

function saveFile(filename, contents, callback) {

mkdirp(path.dirname(filename), err => {

if (err) {

return callback(err);

}

fs.writeFile(filename, contents, callback);

});

}

function download(url, filename, callback) {

console.log(`Downloading ${url}`);

request(url, (err, response, body) => {

if (err) {

return callback(err);

}

saveFile(filename, body, err => {

if (err) {

return callback(err);

}

console.log(`Downloaded and saved: ${url}`);

callback(null, body);

});

})

}

function spider(url, callback) {

const filename = utilities.urlToFilename(url);

console.log(`filename: ${filename}`);

fs.exists(filename, exists => {

if (exists) {

return callback(null, filename, false);

}

download(url, filename, err => {

if (err) {

return callback(err);

}

callback(null, filename, true);

})

});

}

spider(process.argv[2], (err, filename, downloaded) => {

if (err) {

console.log(err);

} else if (downloaded) {

console.log(`Completed the download of ${filename}`);

} else {

console.log(`${filename} was already downloaded`);

}

});

上边的代码基本上是采用原生优化后的结果,但这个蜘蛛的功能太过简单,我们现在需要抓取某个网页中的所有url,这样才会引申出串行和并行的问题。

(spider_v3.js)

const request = require("request");

const fs = require("fs");

const mkdirp = require("mkdirp");

const path = require("path");

const utilities = require("./utilities");

function saveFile(filename, contents, callback) {

mkdirp(path.dirname(filename), err => {

if (err) {

return callback(err);

}

fs.writeFile(filename, contents, callback);

});

}

function download(url, filename, callback) {

console.log(`Downloading ${url}`);

request(url, (err, response, body) => {

if (err) {

return callback(err);

}

saveFile(filename, body, err => {

if (err) {

return callback(err);

}

console.log(`Downloaded and saved: ${url}`);

callback(null, body);

});

})

}

/// 最大的启发是实现了如何异步循环遍历数组

function spiderLinks(currentUrl, body, nesting, callback) {

if (nesting === 0) {

return process.nextTick(callback);

}

const links = utilities.getPageLinks(currentUrl, body);

function iterate(index) {

if (index === links.length) {

return callback();

}

spider(links[index], nesting - 1, err => {

if (err) {

return callback(err);

}

iterate((index + 1));

})

}

iterate(0);

}

function spider(url, nesting, callback) {

const filename = utilities.urlToFilename(url);

fs.readFile(filename, "utf8", (err, body) => {

if (err) {

if (err.code !== 'ENOENT') {

return callback(err);

}

return download(url, filename, (err, body) => {

if (err) {

return callback(err);

}

spiderLinks(url, body, nesting, callback);

});

}

spiderLinks(url, body, nesting, callback);

});

}

spider(process.argv[2], 2, (err, filename, downloaded) => {

if (err) {

console.log(err);

} else if (downloaded) {

console.log(`Completed the download of ${filename}`);

} else {

console.log(`${filename} was already downloaded`);

}

});

上边的代码相比之前的代码多了两个核心功能,首先是通过辅助类获取到了某个body中的links:

const links = utilities.getPageLinks(currentUrl, body);

内部实现就不解释了,另一个核心代码就是:

/// 最大的启发是实现了如何异步循环遍历数组

function spiderLinks(currentUrl, body, nesting, callback) {

if (nesting === 0) {

return process.nextTick(callback);

}

const links = utilities.getPageLinks(currentUrl, body);

function iterate(index) {

if (index === links.length) {

return callback();

}

spider(links[index], nesting - 1, err => {

if (err) {

return callback(err);

}

iterate((index + 1));

})

}

iterate(0);

}

可以说上边这一小段代码,就是采用原生实现异步串行的pattern了。除了这些之外,还引入了nesting的概念,通过这是这个属性,可以控制抓取层次。

到这里我们就完整的实现了串行的功能,考虑到性能,我们要开发并行抓取的功能。

(spider_v4.js)

const request = require("request");

const fs = require("fs");

const mkdirp = require("mkdirp");

const path = require("path");

const utilities = require("./utilities");

function saveFile(filename, contents, callback) {

mkdirp(path.dirname(filename), err => {

if (err) {

return callback(err);

}

fs.writeFile(filename, contents, callback);

});

}

function download(url, filename, callback) {

console.log(`Downloading ${url}`);

request(url, (err, response, body) => {

if (err) {

return callback(err);

}

saveFile(filename, body, err => {

if (err) {

return callback(err);

}

console.log(`Downloaded and saved: ${url}`);

callback(null, body);

});

})

}

/// 最大的启发是实现了如何异步循环遍历数组

function spiderLinks(currentUrl, body, nesting, callback) {

if (nesting === 0) {

return process.nextTick(callback);

}

const links = utilities.getPageLinks(currentUrl, body);

if (links.length === 0) {

return process.nextTick(callback);

}

let completed = 0, hasErrors = false;

function done(err) {

if (err) {

hasErrors = true;

return callback(err);

}

if (++completed === links.length && !hasErrors) {

return callback();

}

}

links.forEach(link => {

spider(link, nesting - 1, done);

});

}

const spidering = new Map();

function spider(url, nesting, callback) {

if (spidering.has(url)) {

return process.nextTick(callback);

}

spidering.set(url, true);

const filename = utilities.urlToFilename(url);

/// In this pattern, there will be some issues.

/// Possible problems to download the same url again and again。

fs.readFile(filename, "utf8", (err, body) => {

if (err) {

if (err.code !== 'ENOENT') {

return callback(err);

}

return download(url, filename, (err, body) => {

if (err) {

return callback(err);

}

spiderLinks(url, body, nesting, callback);

});

}

spiderLinks(url, body, nesting, callback);

});

}

spider(process.argv[2], 2, (err, filename, downloaded) => {

if (err) {

console.log(err);

} else if (downloaded) {

console.log(`Completed the download of ${filename}`);

} else {

console.log(`${filename} was already downloaded`);

}

});

这段代码同样很简单,也有两个核心内容。一个是如何实现并发:

/// 最大的启发是实现了如何异步循环遍历数组

function spiderLinks(currentUrl, body, nesting, callback) {

if (nesting === 0) {

return process.nextTick(callback);

}

const links = utilities.getPageLinks(currentUrl, body);

if (links.length === 0) {

return process.nextTick(callback);

}

let completed = 0, hasErrors = false;

function done(err) {

if (err) {

hasErrors = true;

return callback(err);

}

if (++completed === links.length && !hasErrors) {

return callback();

}

}

links.forEach(link => {

spider(link, nesting - 1, done);

});

}

上边的代码可以说是实现并发的一个pattern。利用循环遍历来实现。另一个核心是,既然是并发的,那么利用 fs.exists 就会存在问题,可能会重复下载同一文件,这里的解决方案是:

  • 使用Map缓存某一url,url应该作为key

现在我们又有了新的需求,要求限制同时并发的最大数,那么在这里就引进了一个我认为最重要的概念:队列。

(task-Queue.js)

class TaskQueue {

constructor(concurrency) {

this.concurrency = concurrency;

this.running = 0;

this.queue = [];

}

pushTask(task) {

this.queue.push(task);

this.next();

}

next() {

while (this.running < this.concurrency && this.queue.length) {

const task = this.queue.shift();

task(() => {

this.running--;

this.next();

});

this.running++;

}

}

}

module.exports = TaskQueue;

上边的代码就是队列的实现代码,核心是 next() 方法,可以看出,当task加入队列中后,会立刻执行,这不是说这个任务一定马上执行,而是指的是next会立刻调用。

(spider_v5.js)

const request = require("request");

const fs = require("fs");

const mkdirp = require("mkdirp");

const path = require("path");

const utilities = require("./utilities");

const TaskQueue = require("./task-Queue");

const downloadQueue = new TaskQueue(2);

function saveFile(filename, contents, callback) {

mkdirp(path.dirname(filename), err => {

if (err) {

return callback(err);

}

fs.writeFile(filename, contents, callback);

});

}

function download(url, filename, callback) {

console.log(`Downloading ${url}`);

request(url, (err, response, body) => {

if (err) {

return callback(err);

}

saveFile(filename, body, err => {

if (err) {

return callback(err);

}

console.log(`Downloaded and saved: ${url}`);

callback(null, body);

});

})

}

/// 最大的启发是实现了如何异步循环遍历数组

function spiderLinks(currentUrl, body, nesting, callback) {

if (nesting === 0) {

return process.nextTick(callback);

}

const links = utilities.getPageLinks(currentUrl, body);

if (links.length === 0) {

return process.nextTick(callback);

}

let completed = 0, hasErrors = false;

links.forEach(link => {

/// 给队列出传递一个任务,这个任务首先是一个函数,其次该函数接受一个参数

/// 当调用任务时,触发该函数,然后给函数传递一个参数,告诉该函数在任务结束时干什么

downloadQueue.pushTask(done => {

spider(link, nesting - 1, err => {

/// 这里表示,只要发生错误,队列就会退出

if (err) {

hasErrors = true;

return callback(err);

}

if (++completed === links.length && !hasErrors) {

callback();

}

done();

});

});

});

}

const spidering = new Map();

function spider(url, nesting, callback) {

if (spidering.has(url)) {

return process.nextTick(callback);

}

spidering.set(url, true);

const filename = utilities.urlToFilename(url);

/// In this pattern, there will be some issues.

/// Possible problems to download the same url again and again。

fs.readFile(filename, "utf8", (err, body) => {

if (err) {

if (err.code !== 'ENOENT') {

return callback(err);

}

return download(url, filename, (err, body) => {

if (err) {

return callback(err);

}

spiderLinks(url, body, nesting, callback);

});

}

spiderLinks(url, body, nesting, callback);

});

}

spider(process.argv[2], 2, (err, filename, downloaded) => {

if (err) {

console.log(`error: ${err}`);

} else if (downloaded) {

console.log(`Completed the download of ${filename}`);

} else {

console.log(`${filename} was already downloaded`);

}

});

因此,为了限制并发的个数,只需在 spiderLinks 方法中,把task遍历放入队列就可以了。这相对来说很简单。

到这里为止,我们使用原生JavaScript实现了一个有相对完整功能的网络蜘蛛,既能串行,也能并发,还可以控制并发个数。

2.使用async库

把不同的功能放到不同的函数中,会给我们带来巨大的好处,async库十分流行,它的性能也不错,它内部基于callback。

(spider_v6.js)

const request = require("request");

const fs = require("fs");

const mkdirp = require("mkdirp");

const path = require("path");

const utilities = require("./utilities");

const series = require("async/series");

const eachSeries = require("async/eachSeries");

function download(url, filename, callback) {

console.log(`Downloading ${url}`);

let body;

series([

callback => {

request(url, (err, response, resBody) => {

if (err) {

return callback(err);

}

body = resBody;

callback();

});

},

mkdirp.bind(null, path.dirname(filename)),

callback => {

fs.writeFile(filename, body, callback);

}

], err => {

if (err) {

return callback(err);

}

console.log(`Downloaded and saved: ${url}`);

callback(null, body);

});

}

/// 最大的启发是实现了如何异步循环遍历数组

function spiderLinks(currentUrl, body, nesting, callback) {

if (nesting === 0) {

return process.nextTick(callback);

}

const links = utilities.getPageLinks(currentUrl, body);

if (links.length === 0) {

return process.nextTick(callback);

}

eachSeries(links, (link, cb) => {

"use strict";

spider(link, nesting - 1, cb);

}, callback);

}

const spidering = new Map();

function spider(url, nesting, callback) {

if (spidering.has(url)) {

return process.nextTick(callback);

}

spidering.set(url, true);

const filename = utilities.urlToFilename(url);

fs.readFile(filename, "utf8", (err, body) => {

if (err) {

if (err.code !== 'ENOENT') {

return callback(err);

}

return download(url, filename, (err, body) => {

if (err) {

return callback(err);

}

spiderLinks(url, body, nesting, callback);

});

}

spiderLinks(url, body, nesting, callback);

});

}

spider(process.argv[2], 1, (err, filename, downloaded) => {

if (err) {

console.log(err);

} else if (downloaded) {

console.log(`Completed the download of ${filename}`);

} else {

console.log(`${filename} was already downloaded`);

}

});

在上边的代码中,我们只使用了async的三个功能:

const series = require("async/series"); // 串行

const eachSeries = require("async/eachSeries"); // 并行

const queue = require("async/queue"); // 队列

由于比较简单,就不做解释了。async中的队列的代码在(spider_v7.js)中,和上边我们自定义的队列很相似,也不做更多解释了。

3.Promise

Promise是一个协议,有很多库实现了这个协议,我们用的是ES6的实现。简单来说promise就是一个约定,如果完成了,就调用它的resolve方法,失败了就调用它的reject方法。它内有实现了then方法,then返回promise本身,这样就形成了调用链。

其实Promise的内容有很多,在实际应用中是如何把普通的函数promise化。这方面的内容在这里也不讲了,我自己也不够格

(spider_v8.js)

const utilities = require("./utilities");

const request = utilities.promisify(require("request"));

const fs = require("fs");

const readFile = utilities.promisify(fs.readFile);

const writeFile = utilities.promisify(fs.writeFile);

const mkdirp = utilities.promisify(require("mkdirp"));

const path = require("path");

function saveFile(filename, contents, callback) {

mkdirp(path.dirname(filename), err => {

if (err) {

return callback(err);

}

fs.writeFile(filename, contents, callback);

});

}

function download(url, filename) {

console.log(`Downloading ${url}`);

let body;

return request(url)

.then(response => {

"use strict";

body = response.body;

return mkdirp(path.dirname(filename));

})

.then(() => writeFile(filename, body))

.then(() => {

"use strict";

console.log(`Downloaded adn saved: ${url}`);

return body;

});

}

/// promise编程的本质就是为了解决在函数中设置回调函数的问题

/// 通过中间层promise来实现异步函数同步化

function spiderLinks(currentUrl, body, nesting) {

let promise = Promise.resolve();

if (nesting === 0) {

return promise;

}

const links = utilities.getPageLinks(currentUrl, body);

links.forEach(link => {

"use strict";

promise = promise.then(() => spider(link, nesting - 1));

});

return promise;

}

function spider(url, nesting) {

const filename = utilities.urlToFilename(url);

return readFile(filename, "utf8")

.then(

body => spiderLinks(url, body, nesting),

err => {

"use strict";

if (err.code !== 'ENOENT') {

/// 抛出错误,这个方便与在整个异步链的最后通过呢catch来捕获这个链中的错误

throw err;

}

return download(url, filename)

.then(body => spiderLinks(url, body, nesting));

}

);

}

spider(process.argv[2], 1)

.then(() => {

"use strict";

console.log('Download complete');

})

.catch(err => {

"use strict";

console.log(err);

});

可以看到上边的代码中的函数都是没有callback的,只需要在最后catch就可以了。

在设计api的时候,应该支持两种方式,及支持callback,又支持promise

function asyncDivision(dividend, divisor, cb) {

return new Promise((resolve, reject) => {

"use strict";

process.nextTick(() => {

const result = dividend / divisor;

if (isNaN(result) || !Number.isFinite(result)) {

const error = new Error("Invalid operands");

if (cb) {

cb(error);

}

return reject(error);

}

if (cb) {

cb(null, result);

}

resolve(result);

});

});

}

asyncDivision(10, 2, (err, result) => {

"use strict";

if (err) {

return console.log(err);

}

console.log(result);

});

asyncDivision(22, 11)

.then((result) => console.log(result))

.catch((err) => console.log(err));

4.Generator

Generator很有意思,他可以让暂停函数和恢复函数,利用thunkify和co这两个库,我们下边的代码实现起来非常酷。

(spider_v9.js)

const thunkify = require("thunkify");

const co = require("co");

const path = require("path");

const utilities = require("./utilities");

const request = thunkify(require("request"));

const fs = require("fs");

const mkdirp = thunkify(require("mkdirp"));

const readFile = thunkify(fs.readFile);

const writeFile = thunkify(fs.writeFile);

const nextTick = thunkify(process.nextTick);

function* download(url, filename) {

console.log(`Downloading ${url}`);

const response = yield request(url);

console.log(response);

const body = response[1];

yield mkdirp(path.dirname(filename));

yield writeFile(filename, body);

console.log(`Downloaded and saved ${url}`);

return body;

}

function* spider(url, nesting) {

const filename = utilities.urlToFilename(url);

let body;

try {

body = yield readFile(filename, "utf8");

} catch (err) {

if (err.code !== 'ENOENT') {

throw err;

}

body = yield download(url, filename);

}

yield spiderLinks(url, body, nesting);

}

function* spiderLinks(currentUrl, body, nesting) {

if (nesting === 0) {

return nextTick();

}

const links = utilities.getPageLinks(currentUrl, body);

for (let i = 0; i < links.length; i++) {

yield spider(links[i], nesting - 1);

}

}

/// 通过co就自动处理了回调函数,直接返回了回调函数中的参数,把这些参数放到一个数组中,但是去掉了err信息

co(function* () {

try {

yield spider(process.argv[2], 1);

console.log('Download complete');

} catch (err) {

console.log(err);

}

});

总结

我并没有写promise和generator并发的代码。以上这些内容来自于这本书nodejs-design-patterns 。

demo下载

以上是 浅谈Node.js之异步流控制 的全部内容, 来源链接: utcz.com/z/333449.html

回到顶部