PostgreSQL树形结构的递归查询示例

背景

处理不确定深度的层级结构,比如组织机构,一个常用的设计是在一张表里面保存 ID 和 Parent_ID ,并且通过自联结的办法构造一颗树。这种方式对写数据的过程很友好,但是查询过程就变得相对复杂。在不引入MPTT模型的前提下,必须通过递归算法来查询某个节点和下级子节点。

Oracle提供的connect by扩展语法,简单好用。但是其他的RDBMS就没这么人性化了(或者我不知道)。最近在项目中使用PostgreSQL来查询树形数据,记录一下。

构造样本数据

drop table if exists demo.tree_data;

create table demo.tree_data (

id integer,

code text,

pid integer,

sort integer

);

insert into demo.tree_data values(1, '中国', null, 1);

insert into demo.tree_data values(2, '四川', 1, 1);

insert into demo.tree_data values(3, '云南', 1, 2);

insert into demo.tree_data values(4, '成都', 2, 1);

insert into demo.tree_data values(5, '绵阳', 2, 2);

insert into demo.tree_data values(6, '武侯区', 4, 1);

insert into demo.tree_data values(7, '昆明', 3, 1);

connectby函数

如果安装了 tablefunc 扩展,就可以使用PG版本的connectby函数。这个没有Oracle那么强大,但是可以满足基本要求。

-- API 如下

connectby(text relname, -- 表名称

text keyid_fld, -- id字段

text parent_keyid_fld -- 父id字段

[, text orderby_fld ], -- 排序字段

text start_with, -- 起始行的id值

int max_depth -- 树深度,0表示无限

[, text branch_delim ]) -- 路径分隔符

-- 基本用法如下,必须通过AS子句定义返回的字段名称和类型

select *

from connectby('demo.tree_data', 'id', 'pid', 'sort', '1', 0, '~')

as (id int, pid int, lvl int, branch text, sort int);

-- 查询结果

id | pid | lvl | branch | sort

----+-----+-----+---------+------

1 | | 0 | 1 | 1

2 | 1 | 1 | 1~2 | 2

4 | 2 | 2 | 1~2~4 | 3

6 | 4 | 3 | 1~2~4~6 | 4

5 | 2 | 2 | 1~2~5 | 5

3 | 1 | 1 | 1~3 | 6

7 | 3 | 2 | 1~3~7 | 7

(7 rows)

-- 仅仅使用基本用法,只能查询出id的相关信息,如果要查询code等其他字段,就需要通过额外的join操作来实现。

select

t.id, n.code, t.pid, p.code as pcode, lvl, branch

from (

select * from connectby('demo.tree_data', 'id', 'pid', 'sort', '1', 0, '~')

as (id int, pid int, lvl int, branch text, sort int)

) as t

left join demo.tree_data as n on (t.id = n.id)

left join demo.tree_data as p on (t.pid = p.id)

order by t.sort ;

id | code | pid | pcode | lvl | branch

----+--------+-----+-------+-----+---------

1 | 中国 | | | 0 | 1

2 | 四川 | 1 | 中国 | 1 | 1~2

4 | 成都 | 2 | 四川 | 2 | 1~2~4

6 | 武侯区 | 4 | 成都 | 3 | 1~2~4~6

5 | 绵阳 | 2 | 四川 | 2 | 1~2~5

3 | 云南 | 1 | 中国 | 1 | 1~3

7 | 昆明 | 3 | 云南 | 2 | 1~3~7

(7 rows)

PS:虽然通过join可以查询出节点的code,但是branch部分不能直接转换成对应的code,使用上还是不太方便。

CTE语法

使用CTE语法,通过 with recursive 来实现树形数据的递归查询。这个方法虽然没有connectby那么直接,但是灵活性和显示效果更好。

--

with recursive cte as

(

-- 先查询root节点

select

id, code, pid, '' as pcode,

code as branch

from demo.tree_data where id = 1

union all

-- 通过cte递归查询root节点的直接子节点

select

origin.id, origin.code, cte.id as pid, cte.code as pcode,

cte.branch || '~' || origin.code

from cte

join demo.tree_data as origin on origin.pid = cte.id

)

select

id,code, pid, pcode, branch,

-- 通过计算分隔符的个数,模拟计算出树形的深度

(length(branch)-length(replace(branch, '~', ''))) as lvl

from cte;

--

id | code | pid | pcode | branch | lvl

----+--------+-----+-------+-----------------------+-----

1 | 中国 | | | 中国 | 0

2 | 四川 | 1 | 中国 | 中国~四川 | 1

3 | 云南 | 1 | 中国 | 中国~云南 | 1

4 | 成都 | 2 | 四川 | 中国~四川~成都 | 2

5 | 绵阳 | 2 | 四川 | 中国~四川~绵阳 | 2

7 | 昆明 | 3 | 云南 | 中国~云南~昆明 | 2

6 | 武侯区 | 4 | 成都 | 中国~四川~成都~武侯区 | 3

(7 rows)

执行过程说明

从上面的例子可以看出,WITH RECURSIVE语句包含了两个部分

  • non-recursive term(非递归部分),即上例中的union all前面部分
  • recursive term(递归部分),即上例中union all后面部分

执行步骤如下

  • 执行non-recursive term。(如果使用的是union而非union all,则需对结果去重)其结果作为recursive term中对result的引用,同时将这部分结果放入临时的working table中
  • 重复执行如下步骤,直到working table为空:用working table的内容替换递归的自引用,执行recursive term,(如果使用union而非union all,去除重复数据),并用该结果(如果使用union而非union all,则是去重后的结果)替换working table

以上面的query为例,来看看具体过程

执行non-recursive query

-- step 1 执行

select

id, code, pid, '' as pcode,

code as branch

from demo.tree_data where id = 1

-- 结果集和working table为

id | code | pid | pcode | branch

----+------+-----+-------+--------

1 | 中国 | | | 中国

执行recursive query

-- step 2 执行递归,此时自引用cte中的数据是step 1的结果

select

origin.id, origin.code, cte.id as pid, cte.code as pcode,

cte.branch || '~' || origin.code

from cte

join demo.tree_data as origin on origin.pid = cte.id

-- 结果集和working table为

id | code | pid | pcode | branch

----+--------+-----+-------+---------------------

2 | 四川 | 1 | 中国 | 中国~四川

3 | 云南 | 1 | 中国 | 中国~云南

3、继续执行recursive query,直到结果集和working table为空

4、结束递归,将前三个步骤的结果集合并,即得到最终的WITH RECURSIVE的结果集。

严格来讲,这个过程实现上是一个迭代的过程而非递归,不过RECURSIVE这个关键词是SQL标准委员会定立的,所以PostgreSQL也延用了RECURSIVE这一关键词。

总结

以上是 PostgreSQL树形结构的递归查询示例 的全部内容, 来源链接: utcz.com/z/332734.html

回到顶部